Bedienungsanleitung

ADI-2 Pro FS

Conversion done right

32 Bit / 768 kHz Hi-Res Audio

SteadyClock FS

SyncCheck

2 Channels Analog / Digital Converter
4 Channels Digital / Analog Converter
AES / ADAT / SPDIF Interface
32 Bit / 768 kHz Digital Audio
USB 2.0 Class Compliant
2 Extreme Power Headphone Outputs
Digital Signal Processing
Advanced Feature Set

Allgemeines

1 2 3 4	E Li S K	inleitung eferumfang ystemvoraussetzungen urzbeschreibung und Eigenschaften	5 5 6
Ð	In E 4	Detriebnanme – Quick Start	7
	5.1	Anschlusse und Bedienelemente	
	5.2	Quick Start	8
	5.3	Bedienung am Gerät	8
	5.4	Ubersicht Menüstruktur	9
	5.5	Wiedergabe	10
	5.6	Analoge Aufnahme	10
	5.7	Digitale Aufnahme	10
6	Ν	etzteil	11
7	Fi	rmware Update	11
8	F	unktionen im Detail	
	8.1	Extreme Power Kopfhörerausgänge	12
	8.2	Doppelter Kopfhörerausgang	13
	8.3	5-Band Parametric EQ	13
	8.4	Bass / Treble	14
	8.5	Loudness	14
	8.6	SRC (Sample Rate Conversion)	15
	8.7	Crossfeed	15
	8.8	Grenzen des DSP	16

Bedienungs-Details für allgemeinen und Stand-Alone Betrieb

9 Betrieb und Bedienung	18
10 Bedienelemente auf der Front	
10.1 Taster	18
10.2 Encoder	18
11 VOL	19
12 I/O	
12.1 Analog Input	
12.1.1 Settings	19
12.1.2 Parametric EQ	20
12.2 Main Output 1/2	
12.2.1 Settings	21
12.2.2 Bass/Treble	
12.2.3 Loudness	23
12.3 Phones Output 3/4	23
13 EQ	24
14 SETUP	
14.1 Options	
14.1.1 SPDIF / Remap Keys	
14.1.2 Clock	27
14.1.3 Device Mode / DSD	27
14.1.4 Phones	
14.1.5 Display	28
14.2 Load/Store all Settings	
15 Top Screens	
15.1 Global Level Meter	
15.2 Analyzer	30
15.3 State Overview	31
15.4 Dark Volume	
16 Warnhinweise	

17 Modi	

17	141		
	17.1	Auto	. 34
	17.2	Preamp	. 35
	17.3	AD/DA Converter	. 36
	17.4	USB	. 37
	17.5	Digital Through	. 39
	17.6	DĂC	.40
18	Ba	alanced Phones Mode	.41
-			
19	D	SD	
19	D 19.1	SD Allgemeines	.42
19	D : 19.1 19.2	SD Allgemeines DSD Direct	.42 .42
19	D 19.1 19.2 19.3	SD Allgemeines DSD Direct DSD Wiedergabe	.42 .42 .43
19	D 19.1 19.2 19.3 19.4	SD Allgemeines DSD Direct DSD Wiedergabe DSD Aufnahme	.42 .42 .43 .43
19	D : 19.1 19.2 19.3 19.4 19.5	SD Allgemeines DSD Direct DSD Wiedergabe DSD Aufnahme DSD Level Meter.	.42 .42 .43 .43 .43
19	D 19.1 19.2 19.3 19.4 19.5 19.6	SD Allgemeines DSD Direct DSD Wiedergabe DSD Aufnahme DSD Level Meter Unendliche Weiten	.42 .42 .43 .43 .44 .44

Eingänge und Ausgänge

20	A	naloge Eingänge	
21	A	naloge Ausgänge	
	21.1	Allgemeines	46
	21.2	Line Out TS 1/2	47
	21.3	Line Out XLR 1/2	47
	21.4	PH Out 1/2	47
	21.5	PH Out 3/4	
22	Di	gitale Anschlüsse	
	22.1	AES	
	22.2	SPDIF	
	22.3	ADAT	

Installation und Betrieb - Windows

23	Tr	eiber-Installation	52
24	K	onfiguration des ADI-2 Pro	
	24.1	Settingsdialog	53
	24.2	Clock Modi - Synchronisation	54
25	Be	etrieb und Bedienung	
	25.1	Wiedergabe	54
	25.2	DVD Playback (AC-3 / DTS)	55
	25.3	Multiclient-Betrieb	55
	25.4	Multiinterface-Betrieb	55
	25.5	ASIO	56
26	DI	GICheck Windows	56

Installation und Betrieb – Mac OS X

27	A	Igemeines	58
	27.1	Konfiguration des ADI-2 Pro	58
	27.2	Clock Modi - Synchronisation	59
	27.3	Multiinterface-Betrieb	59
28	DI	GICheck Mac	59

Installation und Betrieb – iOS

29	Allgemeines	62
30	Systemvoraussetzungen	62
31	Setup	62
32	Unterstützte Eingänge und Ausgänge	62

Technische Referenz

33 Technische Daten

	33.1	Analoge Eingänge	64
	33.2	Analoge Ausgänge	64
	33.3	Digitale Eingänge	65
	33.4	Digitale Ausgänge	66
	33.5	Digitaler Teil	66
	33.6	Allgemeines	66
	33.7	Steckerbelegungen	67
34	Те	chnischer Hintergrund	
	34.1	Lock und SyncCheck	68
	34.2	Latenz und Monitoring	69
	34.3	Balanced Phones Mode	70
	34.4	Emphasis	72
	34.5	Rauschabstand in den Hi-Speed Modi	73
	34.6	SteadyClock	74
	34.7	AD Filterkurven	76
	34.8	DA Filterkurven 44,1 kHz	76
	34.9	DA Impulsantworten	77
	34.10	AD Impulsantworten	78
	34.11	Messungen des Frequenzgangs	79
	34.12	Loudness	79
	34.13	Messungen des Klirrverhaltens	80
	34.14	Extreme Power Leistungsdiagramm	81
	34.15	Vergleich des Klirrverhaltens Phones Out	82
	34.16	Impedanzkorrigierte Pegelanzeige PH 1-4	82
	34.17	USB Audio (Windows)	83
	34.18	ADI-2 Pro als Mess-Frontend	84
	34.19	Tipps zum Einsatz im Bereich Hi-Fi	86
	34.20	Digital Volume Control	89
	34.21	Bit Test	91
	34.22	M/S Processing	92

Diverses

36 Garantio	
	94
37 Anhang	95
38 Konformitätserklärung	96

1. Einleitung

RMEs ADI-2 Pro ist in mehrfacher Hinsicht ein echter Meilenstein. Trotz zahlloser AD/DA Konverter, USB DACs und dedizierter Kopfhörerverstärker auf dem Markt, fehlen nach Meinung der RME-Entwickler offensichtliche Funktionen und Merkmale, die sowohl für Spaß bei der Bedienung als auch für einen uneingeschränkten Musikgenuss unverzichtbar sind. Und während viele dieser Geräte sich damit brüsten, den allerneuesten State-of-the-Art Konverter-Chip zu nutzen, wurden sowohl seriöse Magazine als auch Anwender wiederholt von der Realität enttäuscht, denn die überragenden technischen Daten, publiziert in Anzeigen und Datenblättern, waren an den Anschlüssen nirgendwo zu finden.

Mit der ständig wachsenden Popularität von Kopfhörern, und neuesten AD/DA Chips mit immer weiter verbesserten technischen Daten, war die Zeit reif für ein neues Juwel von RME. Ein Gerät mit einem beispiellosen Verhältnis von Größe zu Funktionsvielfalt, mit Daten die so real sind wie RMEs Ruf, einem nie zuvor gesehenen Set an Ausstattungsmerkmalen, nützlichen Funktionen die unverständlicherweise niemand sonst bisher implementierte, und zwei extrem leistungsfähigen Kopfhörerausgängen, die Ihre neue Referenz in Genauigkeit und Dynamik sein werden.

Hier ist er – der ADI-2 Pro, das kleine Wunder, eine Vielzahl von Geräten komprimiert in einem Gehäuse, mit einfacher und größtenteils automatisierter Bedienung, um ihn direkt nach dem Auspacken sofort nutzen zu können:

- Ein High-End AD/DA Konverter in professioneller Studioqualität
- Ein doppelter Kopfhörerverstärker in echter High-End Qualität
- Ein USB DAC wie kein anderer der flexibelste und leistungsfähigste überhaupt
- Ein High-End AD/DA Frontend und Kopfhörerverstärker für iPad und iPhone
- Ein AD/DA Frontend für Meß-Systeme mit bis zu 768 kHz Samplefrequenz
- Ein Multi-Formatkonverter (AES, SPDIF, ADAT) mit Monitoring
- Ein SPDIF/ADAT Wiedergabesystem
- Ein DSD Aufnahme- und Wiedergabesystem

Bleibt nur noch eins zu sagen: Viel Spaß!

2. Lieferumfang

- ADI-2 Pro
- Handbuch
- Externes Schaltnetzteil mit verriegelbarem Stecker, DC 12 V 24 W
- Netzkabel
- AES/SPDIF Breakoutkabel (BO968)
- Schnellanleitung

3. Systemvoraussetzungen

Generell:

• Netzteil 12V DC, mindestens 1,5 A

Betrieb am Computer:

- Windows 7 oder höher, Intel Mac OS X (10.6.8 oder höher)
- 1 USB 2.0 Port oder USB 3 Port
- Computer mit mindestens Intel Core i3 CPU

Für Betrieb unter iOS:

- iPhone oder iPad mit iOS 7 oder höher
- Dock oder Lightning zu USB Adapter

4. Kurzbeschreibung und Eigenschaften

Der ADI-2 Pro ist ein 2-Kanal Analog zu Digital und 4-Kanal Digital zu Analog Wandler in einem Halb-19 Zoll Gehäuse (9.5") mit einer Höheneinheit. Neueste 32 Bit / 768 kHz Konverter realisieren 124 dBA Rauschabstand. Dieser Wert steht nicht einfach so im Handbuch - er entspricht dem, was das Gerät tatsächlich erreicht.

Durchgängige technische Daten der Referenz-Klasse wurden mit einem nie zuvor gesehenen Bündel an Merkmalen kombiniert. Ein leistungsfähiger DSP ergänzt diese mit nützlichem Audio-Processing, inklusive 5-Band Parametric EQ, schneller Bass/Treble Einstellung, Crossfeed, und einem neuen Konzept für Loudness.

3 Encoder mit Druckfunktion und 4 weitere Taster zum Aufruf spezieller Menüs sorgen für eine einfache und schnelle Bedienung. Das Gerät merkt sich alle Einstellungen, selbst die Menüposition. Zusätzlich lassen sich sowohl der gesamte Gerätezustand als auch die Einstellung des EQ unter individuellen Namen abspeichern.

Ein hochauflösendes IPS-Display für die grafische Bedienoberfläche erleichtert die Bedienung noch mehr, und zeigt weitere, vom DSP zur Verfügung gestellte Funktionen - wie Peak Level Meter, einen 30-Band Analyzer in DIGICheck Biquad Filtertechnik, und eine Zustands-Übersicht mit dem aktuellen Status von SPDIF, AES, USB und der Clock.

Die digitalen Eingänge SPDIF koaxial (oder optisch) und AES sind gleichzeitig nutzbar. Ein zusätzlicher Sample Rate Converter entkoppelt die SPDIF- oder AES-Clock für noch einfachere Setups, und unterstützt auch Up- und Down-Sampling des Eingangssignals. SPDIF optisch unterstützt auch 2 Kanäle des ADAT-Formats, bis hinauf zu 192 kHz.

Als USB-Audiointerface genutzt lässt sich der Class Compliant (UAC2) Modus 2-kanalig (Stereo) oder mehrkanalig (6/8 Kanäle) konfigurieren. Der Modus Multi-channel verwandelt den ADI-2 Pro in ein 6-Kanal (Analog 1/2, AES, SPDIF) Aufnahme- und 8-Kanal (Analog 1/2/3/4, AES, SPDIF) Wiedergabe-Audiointerface, welches sogar als Frontend eines iPad mit bis zu 192 kHz Samplefrequenz arbeitet. Im Modus Stereo werden Samplefrequenzen bis 768 kHz unterstützt, für High-Resolution Aufnahmen, PCM, DXD und DSD Aufnahme/Wiedergabe.

Die servosymmetrischen analogen Eingänge und dedizierten symmetrischen und unsymmetrischen Ausgänge sind mit XLR und 6,3 mm TRS/TS Klinkenbuchsen versehen. Das Gerät nutzt ein vollsymmetrisches und gleichspannungsgekoppeltes Schaltungsdesign, für höchste Phasengenauigkeit und niedrigste Grenzfrequenz. Die einzigen beiden Kondensatoren im gesamten Signalweg, unipolare MUSE Audio-Kondensatoren von Nichicon, befinden sich direkt an der Eingangsbuchse (als Schutz vor externer Gleichspannung).

Die beiden Extreme Power Kopfhörerausgänge liefern Referenz-Klang und -Pegelreserve. RMEs Advanced Balanced Modus, ein weiterer Punkt der endlosen Funktionsliste, präsentiert erstmalig ein neues Konzept zur weiteren Verbesserung des Balanced Phones Betriebs.

Um den vollen Dynamikumfang mit jedem Betriebspegel (+4, +13, +19, +24 dBu) zu erhalten, wurde eine 4-stufige, diskrete Referenzpegelumschaltung realisiert. Zusätzlich steht digitaler Gain von 0 bis +6 dB zum Feinabgleich der Empfindlichkeit bereit, in Schritten von 0,5 dB.

Der ADI-2 Pro unterstützt Samplefrequenzen zwischen 44,1 kHz und 768 kHz. Darüber hinaus garantiert RMEs SteadyClock FS überragendes Verhalten in allen Clock Modi. Aufgrund der effizienten Jitterunterdrückung arbeiten AD- und DA-Wandlung immer optimal und auf höchstem klanglichen Niveau, vollkommen unabhängig von der Qualität der Referenz-Clock.

Der ADI-2 Pro brilliert sowohl im Studio als auch zu Hause. Knackfreies Ein-/Ausschalten und ein komfortabler, beleuchteter Standby-Taster ergänzen das weiche, moderne Desktop-Design.

Mobile und galvanisch getrennte Anwendungen sind dank der 12 V Buchse mit Batteriebetrieb problemlos möglich.

5. Inbetriebnahme - Quickstart

5.1 Anschlüsse und Bedienelemente

Die Front des ADI-2 Pro weist 3 Präzisions-Drehgeber mit Druckfunktion, 4 Taster, einen Standby-Taster, ein hochauflösendes IPS-Display und 2 Kopfhörerausgänge per Stereo-Klinkenbuchsen auf.

Die Ausgangskanäle 1/2 und 3/4 beliefern zwei Kopfhörerausgänge mittels zweier unabhängiger Extreme Power Treiberstufen, optimiert sowohl für hoch- als auch niederohmige Kopfhörer. Ihr unsymmetrisches Ausgangssignal ist von höchster Qualität. Mit einem Rauschabstand von 120 dBA gibt es weder hörbares Brummen noch Rauschen an diesen Ausgängen.

Wenn ein Kopfhörerausgang als Line-Ausgang genutzt werden soll, ist ein Adapter TRS-Stecker auf Cinch-Stecker, oder TRS-Stecker auf zwei TS-Stecker erforderlich.

Die Rückseite des ADI-2 Pro weist 2 servosymmetrische analoge Eingänge per XLR/Klinke Kombibuchsen, 2 TS-Buchsen als unsymmetrische Ausgänge, 2 XLR-Buchsen als symmetrische Ausgänge, TOSLINK optisch I/O, eine USB-Buchse, und eine verriegelbare Netzteilbuchse auf. Ein beiliegendes Breakout-Kabel für die Sub-D 9-pol Buchse stellt AES I/O über XLR und SPDIF koaxial I/O über Cinch bereit.

Beide analoge Line-Eingänge akzeptieren Pegel bis zu +24 dBu. Ihre elektronische Eingangsschaltung arbeitet servosymmetrisch. Sie kann sowohl symmetrische als auch unsymmetrische Eingangssignale bei unveränderter Pegelreferenz nutzen.

Bei Verwendung von unsymmetrischen Kabeln am **XLR**-Eingang sollte deren Pin 3 mit Masse verbunden sein, da es sonst zu Störgeräuschen durch den offenen negativen Eingang der symmetrischen Eingangsstufe kommen kann.

Die analogen Eingänge 1/2 verfügen über bis zu 6 dB einstellbare digitale Vorverstärkung, sowie in diskreter Technik realisierte Referenzpegel von +4 dBu, +13 dBu, +19 dBu und +24 dBu.

Die elektronische Ausgangsschaltung der **XLR-Ausgänge** arbeitet nicht servosymmetrisch! Bei Anschluss unsymmetrischer Geräte ist daher darauf zu achten, dass der negative Pin (3) frei bleibt. Eine Verbindung mit Masse kann zu erhöhtem Klirrfaktor führen.

Optical I/O (TOSLINK): Das Gerät erkennt automatisch, ob ein Signal im SPDIF- oder ADAT-Format anliegt. Der optische Ausgang kann nach Umschaltung unter *SETUP, Options, SPDIF / Remap Keys* im SPDIF- oder ADAT-Modus arbeiten. Bitte beachten Sie, dass im ADAT-Format nur die Kanäle 1/2 zugänglich sind. SMUX und SMUX4 (bis zu 192 kHz) wird jedoch unterstützt.

USB 2.0: Standard USB-Buchse zum Anschluss an den Computer. Der ADI-2 Pro arbeitet als Class Compliant Gerät, im Modus 2-Kanal oder 8-Kanal (zu konfigurieren im Setup). Er kann direkt unter Mac OS X und iOS (iPad, iPhone) genutzt werden. Unter Windows liefert der RME MADIface Series Treiber Unterstützung für WDM und ASIO.

Buchse für Stromversorgung. Diese Buchse unterstützt verriegelbare Stecker, wie den des mitgelieferten RME-Netzteils. Nach Einführung des Steckers ist dieser für eine Verriegelung vorsichtig um 90° zu drehen.

5.2 Quick Start

Gerät mit dem beiliegenden Netzteil verbinden. Zum Start den rot leuchtenden Standby-Tastknopf drücken. Der ADI-2 Pro befindet sich ab Werk im *Basic Mode Auto* (SETUP – Options – Device Mode / DSD – Basic Mode). Auch die Eingangswahl SPDIF (koaxial oder optisch), und die Quellenwahl von Phones Out 3/4 stehen auf Auto; der SRC ist für SPDIF In aktiviert. Mit Auto aktiv schaltet das Gerät je nach angeschlossenen Kabeln in verschiedene Modi:

- Preamp: Analog In zu Analog Out (intern Digital Out zu In). Dieser Modus ist aktiv wenn weder ein digitales Eingangssignal noch USB erkannt wird.
- AD/DA: Konverter, Analog In zu allen digitalen Ausgängen, Digital In zu allen analogen Ausgängen. Dieser Modus wird aktiv sobald ein digitales Signal erkannt wird, welches dann auch die Signalquelle wird. Wird mehr als ein Signal erkannt ist die abzuhörende Quelle vom Anwender manuell auszuwählen. Der SRC ist per Default aktiv und SPDIF zugewiesen. Clock Mode ist Slave zu AES In, wechselt aber auf die jeweils erkannte Quelle (Auto).
- USB: oder Interface. Wird USB erkannt sind alle Ein- und Ausgänge mit USB verbunden. USB hat Priorität gegenüber dem Konverter-Modus. Im Setup lässt sich ein 2- oder 8-Kanal Modus auswählen.

USB lässt sich durch manuelle Auswahl eines anderen Modus überschreiben. Dies ändert das I/O-Routing, deaktiviert USB selbst aber nicht. Alle Eingänge sind auf USB weiterhin verfügbar, und Ausgänge 3/4 können auch USB wiedergeben. In allen Modi außer Basic Mode DAC ist der Ausgang PH 3/4 frei konfigurierbar. Jede mögliche Quelle kann unabhängig von den Ausgängen 1/2 abgehört werden.

Das Gerät merkt sich alle Einstellungen, und lädt diese automatisch beim Einschalten. Zum Ausschalten den Standby-Taster circa 0,5 Sekunden gedrückt halten bis das Display erlischt.

5.3 Bedienung am Gerät

Nützliche Informationen für einen unkomplizierten Start:

Beim Drehen des großen VOLUME-Knopfs erscheint der Volume-Bildschirm des aktuell gewählten Ausgangs. Das Drücken des Volume-Knopfs wechselt die Einstellung zwischen Ausgang 1/2 und 3/4. Die Statuszeile unten im Display zeigt den aktuellen dB-Wert beider Volume-Einstellungen. Ein weißes Rechteck markiert den aktuell gewählten Ausgang, den der Volume-Knopf beeinflusst.

Die Titelzeile zeigt den aktuell gewählten Ausgang und Hardware Referenz-Pegel (Ref Lev, siehe Kapitel 12.2.1).

Der EQ wird entweder direkt innerhalb der I/O Menüstruktur konfiguriert (Taste I/O, Encoder 2 drehen wechselt zwischen Settings, Parametric EQ, Bass/Treble und Loudness), oder über den grafischen EQ-Bildschirm, der nach Druck der Taste EQ erscheint. In diesem Bildschirm hat der Cursor drei Positionen: Top*, die EQ Parameter-Zeile unterhalb der EQ-Grafik, und die Filterauswahl für Band 1 und 5 (Peak, Shelf, Low/High Cut). Der Cursor wird durch Drücken von Encoder 1 und 2 bewegt. Steht er in der Parameter-Zeile sind die Werte nicht mehr ausgegraut. In diesem Zustand steuert der große Encoder den Gain, Encoder 1 die Frequenz, und Encoder 2 die Güte. Dadurch ist der EQ extrem schnell und übersichtlich einzustellen.

Die EQ-Grafik weist 5 Farben auf die den 5 konfigurierbaren Filtern entsprechen. Ist die Linie grau wurde der EQ deaktiviert (Bypass). Der EQ lässt sich im zweiten Bildschirm, der nach erneutem Druck der Taste EQ erscheint, aktivieren.

*(erkennbar an einer 1 neben dem aktuellen Kanal. Durch Drehen von Encoder 1 gelangt man zu anderen Kanälen)

Das Gerät besitzt auf der obersten Ebene mehrere informative Bildschirme. Dies sind **Global Level Meters, Analyzer Input, Analyzer Output 1/2, Analyzer Output 3/4, State Overview** und **Dark Volume**. Per Druck auf Encoder 1 oder 2 wechselt man zwischen diesen, wenn ein solcher gerade aktiv ist. Um diese schnell aufzurufen reicht es einen der vier Taster mehrmals zu drücken.

In all diesen Bildschirmen existiert ein Schnellzugriff auf die Einstellung von Bass und Treble durch Drehen der Encoder 1 und 2, mit \pm 6 dB maximaler Anhebung/Absenkung.

5.4 Übersicht Menüstruktur

5.5 Wiedergabe

In der Audioanwendung ist der ADI-2 Pro als Ausgabegerät einzustellen. Übliche Bezeichnungen sind *Playback Device, Device, Audiogerät* etc., meist unter *Optionen, Vorgaben* oder *Preferences* zu finden. Die Wiedergabe erfolgt über das jeweils ausgewählte Device, und damit wahlweise analog oder digital.

Mehr oder größere Puffer ergeben eine höhere Störsicherheit, aber auch eine größere Verzögerung bis zur Ausgabe der Daten.

5.6 Analoge Aufnahme

Aufnahmen über die analogen Eingänge gelingen nach Anwahl eines entsprechenden Aufnahmegerätes in der Aufnahmesoftware.

Die Eingangskanäle 1/2 des ADI-2 Pro besitzen sowohl digital kontrollierten Gain als auch vier Hardware-basierte Referenz-Pegel. Der Digital-Gain bietet eine Verstärkung in Schritten von 0,5 dB im Bereich 0 bis +6 dB, zum Feinabgleich der Eingangsempfindlichkeit. Die vier Hardware-basierten Referenzpegel dienen der Grobanpassung an die jeweilige Signalquelle. Der ADI-2 Pro besitzt sowohl globale als auch Kanal-basierte Pegelanzeigen. Die Einstellung des optimalen Referenzpegels zur Vermeidung von Über- und Untersteuerung ist daher sehr einfach durchzuführen.

Die XLR/TRS Kombibuchsen sind für Line-Signale ausgelegt. Quellen welche eine höhere Abschlussimpedanz benötigen, wie Gitarren, erfordern einen zusätzlichen Impedanzwandler vor dem Eingang des ADI-2 Pro.

5.7 Digitale Aufnahme

Der einfachste Weg, digitale Aufnahmen mit dem ADI-2 Pro durchzuführen, ist es, den SRC auf den aktuell benutzten Eingang zu schalten (SPDIF oder AES), danach Clock auf INT(ernal) und die gewünschte Samplefrequenz auswählen – dann die Aufnahme starten.

Der SRC arbeitet als Clock-Entkoppler. Wird der SRC nicht genutzt, muss der ADI-2 Pro in vollständiger Synchronisation zum externen Digitalgerät sein, als entweder Master oder Slave. Um dies sicher beherrschbar zu machen, hat RME den ADI-2 Pro mit einer umfassenden I/O Statusanzeige versehen, welche Samplefrequenz, Lock und Sync Status im Bildschirm State Overview und der unteren Statuszeile anzeigt.

Die Anzeige der Samplefrequenz im Bildschirm State Overview bietet einen schnellen Überblick über die aktuelle Konfiguration des Gerätes und der extern angeschlossenen. Liegt keine erkennbare Frequenz an erscheint - - (No Lock).

Dies erleichtert eine Konfiguration der jeweiligen Software zur Durchführung einer digitalen Aufnahme enorm. Nach dem Anschluss zeigt der Bildschirm des ADI-2 Pro die aktuelle und externe Samplefrequenz. Diese ist dann im Eigenschaftendialog (oder ähnlichem) des jeweiligen Aufnahme-Programms einzustellen.

6. Netzteil

Um den Betrieb des ADI-2 Pro möglichst flexibel zu halten besitzt das Gerät eine universelle DC Eingangsbuchse, die Spannungen zwischen 9,5 Volt und 15 Volt akzeptiert. Ein interner Schaltregler neuester Technologie mit hohem Wirkungsgrad (> 90%) vermeidet interne Brummgeräusche, da er oberhalb des hörbaren Audiobereichs arbeitet. Intern folgen dem Schaltregler normale Linearregler, und diesen dann Super Low Noise Linearregler. Daher erreicht der ADI-2 Pro seine technischen Daten selbst mit weniger optimalen Netzteilen. Oder in anderen Worten: die Wahl der Stromversorgung ist unkritisch.

Trotzdem wird das Gerät mit einem hochwertigen Schaltnetzteil geliefert, 12 V / 2 A, welches nicht nur jegliche Netzspannung zwischen 100 V und 240 V akzeptiert (weltweit nutzbar), sondern auch Spannungsschwankungen ausgleicht und Netzstörungen unterdrückt. Außerdem wiegt es nur 150 Gramm, trotz seiner hohen Leistungsabgabe von 24 Watt.

Der Gleichspannungseingang des ADI-2 Pro erlaubt eine Nutzung aufladbarer Blei- oder Lithium-Polymer Akkus statt eines Netzteils, und damit mobilen und galvanisch getrennten Betrieb. Ein passendes Kabel (Netzteilstecker zu 6,3 mm Steckschuhen) ist von RME erhältlich. Spezielle Power Banks im Bereich von 10.000 mAh und mehr sind mit zusätzlichem 12 V Ausgang verfügbar. Sie bieten eine perfekte Lösung für Mobilität als auch Potentialtrennung, für vergleichsweise wenig Geld.

7. Firmware Update

Der ADI-2 Pro erhält eventuell erweiterte Funktionen oder Fehlerkorrekturen über ein Firmware Update. Dieses wäre auf der RME Webseite, Sektion Downloads, USB, erhältlich. Nach dem Herunterladen des passenden Tools (Mac oder Windows) ist das gezippte Archiv zu entpacken.

Das Flash Update Tool aktualisiert die Firmware des ADI-2 Pro auf die jeweils neueste Version. Unter Windows erfordert es einen installierten Treiber der MADIface Serie, der sich auf der gleichen Download-Seite befindet.

Nach dem Start des Flash Update Tool zeigt es zunächst die aktuelle Version der Firmware des ADI-2 Pro, und ob diese aktualisiert werden sollte. Wenn ja, dann einfach den Knopf 'Update' drücken. Ein Balken zeigt den Fortgang des Updates und das Ende des Flash-Vorganges an (Verify Ok).

Nach dem Update muss der ADI-2 Pro durch kurzes Ausschalten in den Standby-Modus resettet werden.

nterface (Serial N	lumber):	
ADI-2 Pro (5376	63673) 😳	
Firmware	Current Revision	New Revision
USB	118	125
DSP	65	69
Fallback USB	118	
Programming Sta	tus: Success	
Programming Sta	tus: Success	
Programming Sta	tus: Success Upcate	🗌 Flash All

Sollte das Flashen unerwartet fehlschlagen wird ab dem nächsten Neustart das Not-BIOS des Gerätes benutzt, es bleibt also funktionsfähig. Das Flashen kann dann erneut versucht werden.

Der Flash-Vorgang überschreibt keine Nutzerdaten, wie Wahl der Samplefrequenz, Einstellungen des EQ, Anwender-Setups oder EQ-Presets.

Rückkehr zum Werkszustand

Siehe Kapitel 14.2.

8. Funktionen im Detail

8.1 Extreme Power Kopfhörerausgänge

Während der Entwicklung des ADI-2 Pro erfolgte eine Recherche zur aktuellen Headphone Amp Technologie und zu Kopfhörern. Viele (viele!) Kopfhörer später wurde als Entwicklungsziel ein maximaler Ausgangspegel von +22 dBu (10 Volt) festgesetzt, da dieser selbst unempfindliche Kopfhörer ausreichend versorgt, wobei ein maximaler Ausgangsstrom von circa 260 mA pro Kanal reichlich Leistung für niederohmige Kopfhörer liefert (1,5 Watt @ 32 Ohm).

Die Begrenzung des Stroms ist sehr sinnvoll. Sie hilft das interne Netzteil nicht zu überlasten, schwächere Kopfhörer nicht hoffnungslos zu überfahren (zu zerstören), und verhindert Fehlfunktionen bei Kurzschluss. Die Extreme Power Ausgangsstufe verhält sich wie ein kleiner Verstärker, und erhielt daher ähnliche Funktionen: ein Relais unterbricht die Verbindung zum Kopfhörer und schaltet stumm, eine Gleichspannungserkennung verhindert selbige am Ausgang (DC zerstört Ihre kostbaren Kopfhörer schon bevor deren Leistungsangabe auch nur annähernd erreicht wird), und eine Überlast-Schutzschaltung erkennt zu hohen Strombedarf durch Kurzschlüsse, die damit eine Zerstörung der Ausgangsstufe verhindert. Angesichts der brutalen Misshandlung dieser Ausgangsstufe während der Entwicklung sei erwähnt, dass sie durch Kurzschlüss oder Überhitzung nach bisheriger Erfahrung nicht zerstörbar ist. Aber ein bisschen mehr Sicherheit kann nicht schaden, und deshalb ist die Schutzschaltung nun auch im Gerät.

Ein Ziel der Entwicklung war ein Kopfhörerverstärker mit sehr geringem Klirr, nicht nur unbelastet (typischer Messvorgang), sondern *sehr* geringem Klirr auch mit realer Last von 32 oder 16 Ohm. Dies wurde mit der neuen *Extreme Power* Treiberstufe erreicht. Sie nutzt eine 6-fach verteilte Leistungstechnik, verbesserte Wärmeableitung, sowie ein spezielles Super Low Distortion Treiberdesign. Damit erreicht sie THD unter -110 dB bei 32 Ohm Last, selbst nah am maximalen Ausgangspegel (Clipping), den gleichen Rauschabstand wie der DAC (120 dBA), eine Ausgangsimpedanz von nur 0,1 Ohm, vollkommen stabilen Betrieb, und einen Frequenzgang von 0 Hz bis 80 kHz mit nur 0,5 dB Abfall. Das Resultat: kein hörbares Brummen, Rauschen oder Verzerrung, voll transparenter und kristallklarer Klang bei jeder Lautstärkeeinstellung.

Und das ist nicht alles. Die Kopfhörerbuchsen des ADI-2 Pro besitzen Sensorkontakte. Das Gerät weiß wann ein Kopfhörer eingesteckt oder entfernt wurde. Der DSP nutzt diese Information für mehrere außergewöhnliche, teils nie zuvor gesehene Funktionen. So aktiviert der ADI-2 Pro das Mute Relais eine halbe Sekunde nachdem der Hörer eingesteckt wurde. Danach regelt der DSP langsam die Lautstärke von leise bis zum zuletzt genutzten Wert hoch. Komfortabel? Luxuriös? Ja, aber der Hauptgrund für diese Funktion ist dem Anwender eine Chance zu geben zu reagieren. Extreme Power Kopfhörerausgänge auf hohe Lautstärke gestellt, Musik spielt schon auf Vollpegel, die Kopfhörer werden eingesteckt, und wenn das Relais anzieht wird der Arzt gerufen - Diagnose Hörsturz. Dies sollte und kann mit dem ADI-2 Pro nicht passieren. Während die Lautstärke hochfährt hat man Gelegenheit entweder die Kopfhörer abzusetzen, den Stecker abzuziehen, oder mit dem Volume-Knopf die Lautstärke schnell zu reduzieren.

Um sicherzustellen dass der Volume-Knopf in diesem Augenblick auch die richtigen Ausgänge kontrolliert, setzt der DSP die Lautstärkeeinstellung immer auf den Ausgang in den zuletzt Kopfhörer eingesteckt wurden. Und setzt die Einstellung sogar zurück wenn sie entfernt werden. Dies ist nur *ein* Beispiel, wie intelligent und umfassend die Kontroll-Logik des ADI-2 Pro implementiert wurde. Es gibt viele solcher Funktionen und Merkmale, die teils sogar unbemerkt bleiben werden, aber das Gerät sowohl sicher als auch einfach in der Bedienung machen.

Aber sind +22 dBu, im Menü Hi-Power genannt, nicht viel zu laut für aktuelle Kopfhörer? Jein. Es gibt immer noch Hörer die hohe Pegel benötigen. Musik kann leise sein, aber relativ viel Leistung benötigen, gerade im Sub-Bass. Und viel Headroom zu haben ist immer gut. Mit Hi-Power off, entsprechend +7 dBu maximalem Ausgangspegel, moderner Musik und aktuellen Hörern, wird Hi-Power sicher nicht benötigt. Aber Sie werden feststellen, dass selbst mit Hi-Power aktiv, welches eine 15 dB niedrigere Lautstärkeeinstellung erfordert, der Klang unverändert ist. Selbst mit Volume auf -40 dB liefert der ADI-2 Pro perfekte Klangqualität, und ist damit vollkommen unkritisch bei der täglichen Nutzung und Einstellung.

8.2 Doppelter Kopfhörerausgang

Viele Merkmale und Entscheidungen zum Design des ADI-2 Pro stammen aus persönlicher Nutzung und Erfahrung. Zum Beispiel stellt sich das Vergleichen von Kopfhörern mit nur einem Ausgang als sehr schwierig dar. Der Wechsel des Kopfhörers auf dem Kopf ist bereits ein unterbrechender Prozess, aber durch fehlende Pegelanpassung, und der Notwendigkeit einen Kopfhörer aus- und den anderen einzustecken, lassen sich nur grobe Unterschiede einfach erkennen. Bei RME sind wir es gewohnt Kopfhörer an einem Fireface UFX oder 802 zu vergleichen. Diese außergewöhnlichen Audiointerfaces besitzen zwei unabhängige Kopfhörerausgänge. Das begleitende TotalMix FX, ein DSP-basierter Mischer, erlaubt es das gleiche Audiosignal an beide Ausgänge zu senden, mit individuellen Lautstärkeinstellungen. Ist also ein Hörer leiser wird die Lautstärke für ihn einfach angehoben, oder beim anderen abgesenkt, bis beide eine identische Lautstärke aufweisen - was den Vergleich deutlich einfacher macht.

Der ADI-2 Pro besitzt zwei Stereo DA-Wandler, um gleichsam zwei unabhängige Kopfhörerausgänge bereitzustellen. Ein dritter DAC für die Line-Ausgänge hätte Kosten, Platzbedarf und Aufwand erheblich erhöht. Da eine solche Anwendung, das Hören oder Vergleichen mit zwei Kopfhörern, nicht so häufig vorkommt, teilt sich der Ausgang PH 1/2 das Signal mit dem hinteren Ausgang 1/2. Obwohl PH 1/2 die gleichen technischen Daten wie PH 3/4 aufweist, und über die exakt gleiche Extreme Power Ausgangsstufe verfügt, ist er vom Konzept her doch ein Zweit-Ausgang, eben für Kopfhörervergleiche, die Nutzung zweier Kopfhörer, den Betrieb im Balanced Phones Modus – oder einfach als weiterer unsymmetrischer Line-Ausgang. Der Haupt-Kopfhörerausgang ist PH 3/4, unabhängig von den hinteren Ausgängen 1/2. Für die meisten Anwender wird er der einzige jemals benutzte Ausgang sein. Und deshalb wurde er für eine bessere Bedienung bewusst weiter entfernt vom Volume-Knopf platziert, was zu einer ungewohnten Anordnung mit PH 3/4 links und PH 1/2 rechts führt.

Ein Hauptgrund nicht nur zwei, sondern zwei unabhängige Kopfhörerausgänge zu haben, ist die bessere Vergleichsmöglichkeit. Aber das ist noch nicht alles, siehe nächstes Kapitel.

8.3 5-Band Parametric EQ (PEQ)

Der Kopfhörervergleich mittels Fireface UFX und 802 hat einen weiteren, großen Vorteil: Total-Mix FX kontrolliert einen 3-Band Parametric Equalizer (PEQ), wiederum unabhängig für beide Ausgänge. Hat also einer der Kopfhörer zu viel oder zu wenig Bass, ist es sehr einfach diesen anzupassen, so dass beide Kopfhörer ähnlicher klingen. Das macht es sehr viel einfacher die grundsätzlichen, feineren Klangunterschiede in der Signatur der Hörer zu erkennen.

Seit langem an eine solche luxuriöse Doppel-Ausgangslösung gewohnt, führte beim ADI-2 Pro kein Weg an zwei vollständig unabhängigen, identischen 'Extreme Power' Kopfhörerausgängen, und unabhängigen Equalizern für beide Ausgänge vorbei. Er stellt damit definitiv die Premium-Methode bereit, Kopfhörer seriös und effizient zu vergleichen.

Der Verzicht auf Klangregelung und rein lineares Hören waren viele Jahre ein Mantra der High-End Szene. Doch die Forschung sagt: Ohren sind unterschiedlich, und besonders im Nahfeldbereich (mit Kopfhörern) machen allein biologische Differenzen schon eine individuelle Klangkorrektur erforderlich. Keine zwei Ohren hören identisch. Zusätzlich gibt es individuelle Vorlieben beim Grundklang, welcher auf verschiedenen Kopfhörern mit einem guten EQ einfach angeglichen (equalized) und kopiert werden kann. Die Vorteile der Nutzung eines EQ überwiegen alle angeblichen Nachteile - die sich bei genauer Betrachtung oft als unwahr herausstellen.

Die Erfahrungen bei der Nutzung des PEQ zur Linearisierung und individuellen Anpassung einer Reihe von Kopfhörern ergaben 5 Bänder parametrischen EQs als beste Balance zwischen effizienter Klangbearbeitung und DSP-Last. Einige Kopfhörer brauchen für eine lineare Wiedergabe deutlich mehr als 5 Bänder. Allerdings realisiert man schnell, dass schmalere Spitzen und Senken keinen hörbaren Unterschied nach der Korrektur ergeben. Bei schmalen Bereichen ist die akustische Energie zu klein um hörbar zu werden. Beschränkt man sich also auf die Korrektur von Abweichungen welche eine Güte von 3 oder kleiner erfordern, wird der 5-Band Parametric EQ zu einem sehr effizienten Tool, selbst für problematische Kopfhörer. Dies ist eines der vielen Merkmale die sich auf keinem anderen ähnlichen Gerät finden: ein hoch-qualitativer 5-Band Parametric EQ, nutzbar selbst bei 768 kHz Samplefrequenz, leicht zu bedienen und einzustellen, mit einem grafischen Display welches die Gesamtkurve zeigt, und 20 Speicherplätzen samt individueller Benamung. Egal welche EQ-Einstellung gerade benötigt wird, sie ist schnell geladen und modifiziert. Und es gibt nicht nur einen, sondern drei solcher EQs, getrennt für die analogen Eingänge und beide Stereo-Ausgänge.

In diesem Zusammenhang: Viele Menschen leiden an Hörverlust in unterschiedlicher Ausprägung. Egal ob es biologisch bedingt ist, durch Mißbrauch oder einen Unfall entstand - Hörprobleme sind eine Seuche moderner Zeiten. Wenig überraschend sind im Normalfall nicht beide Ohren gleich betroffen. Die Zahl an Menschen mit einseitiger Hörbeeinträchtigung ist enorm, aber sie haben gelernt mit einer sie komplett ignorierenden Industrie zu leben. Obwohl die Lösung sehr einfach ist - der EQ muss für links und rechts individuell einstellbar sein. Grundsätzlich werden EQs so gerechnet, gemeinsame Regler sind nur eine Vereinfachung der Benutzeroberfläche. Der ADI-2 Pro enthält die Option Dual EQ – ein himmlisches Geschenk für viele.

Natürlich ist der 5-Band Parametric EQ auch zur Lautsprecher- und Raumkorrektur geeignet, wobei ebenfalls unabhängige Setups L/R notwendig sind. Die Nutzung des ADI-2 Pro als DAC für die Hauptmonitore gewinnt von diesem und anderen, an den analogen I/Os verfügbaren typischen RME-Features: Phase und Mono in diversen Optionen, Width und M/S Processing.

8.4 Bass / Treble

Die einfachste Form des EQ waren schon immer die Bass- und Treble-Einsteller, wie sie an jedem HiFi Stereo Verstärker zu finden sind. Sie erlauben es, schnell und einfach den Klang an persönliche Vorlieben anzupassen (mehr oder weniger Bass und Höhen). Eine noch nützlichere Anwendung ist die interaktive, schnelle Änderung des Bass/Treble-Anteils, so dass Musikzusammenstellungen nicht bei einem Song die Membranen herausfliegen lassen, während der nächste so klingt als wäre dies tatsächlich passiert. Produzenten und Tonmeister haben nicht nur ihren eigenen Geschmack, sie versagen manchmal auch dabei einen Song auf ein ähnliches Klangniveau wie das der meisten anderen zu heben. Eine schnelle Drehung an den zwei kleinen Encodern des ADI-2 Pro führt dann zu einer deutlich besser klingenden Wiedergabe.

Bass und Treble sind auf ± 6 dB begrenzt. Alles was diese Werte übersteigt sollte von einem EQ bearbeitet werden, und/oder wirft die Frage nach besseren Lautsprechern/Kopfhörern auf. Einsatzfrequenz und Güte von Bass und Treble sind im Menü des Displays einstellbar, was diese Funktion noch nützlicher macht. Passen Sie es Ihren Lautsprechern/Kopfhörern an, oder Ihrem persönlichen Geschmack – es wird Ihre Freude am Musikhören deutlich erhöhen.

8.5 Loudness

Noch ein Standard-Merkmal von HiFi-Verstärkern: nicht ein einziger verzichtete auf *Loudness*. Diese versucht den unterschiedlichen Klangeindruck bei leiser und lauter Wiedergabe auszugleichen (Frequenz-abhängige Hörempfindlichkeit). Hört man laute Musik, reduziert dann den Pegel um 20 dB, verliert der Klang an Druck und Glanz. HiFi-Verstärker versuchten diesen Effekt durch eine Anhebung von Bässen und Höhen bei geringeren Lautstärkeeinstellungen zu bekämpfen. Leider hat das nie wirklich gut funktioniert, und Loudness verkam zu einem simplen Bass/Treble Booster. Grund: der Hersteller des HiFi-Verstärkers konnte nicht wissen, welcher Lautstärke beim Anwender welche Position des Lautstärkereglers entsprach. Raumgröße, Dämpfung, Effizienz der verwendeten Lautsprecher - alles unbekannte Größen.

Aber der Effekt des Klangverlusts existiert (siehe Fletcher-Munson Kurven), und kann leicht selbst nachvollzogen werden, indem man normale Lautstärke und DIM (typisch -20 dB) vergleicht. Der ADI-2 Pro bietet Loudness für beide analogen Stereoausgänge, und vermutlich funktioniert es hier zum ersten Mal wie gedacht. Der Anwender kann nämlich nicht nur die maximale Anhebung von Bässen und Höhen selbst bestimmen, sondern setzt mit der Low Vol Reference auch den genauen Lautstärkepunkt an dem die Regelung maximal arbeiten soll. Tests ergaben einen Loudnessbereich von typisch 20 dB, dieser ist fest im Gerät eingestellt.

Hier ein Beispiel wie es funktioniert: die leiseste Einstellung des Anwenders beim Musikhören ist -35 dB. Dieser Wert wird nun vom Anwender als Low Vol Ref im Menü Loudness eingestellt. Außerdem werden Bass und Treble Gain nach persönlichem Empfinden auf 0 bis +10 dB gesetzt. Default ist +7 dB für beide. Das Erhöhen der Lautstärke durch Drehen des Volume-Knopfs führt nun zu einer stufenlosen Verringerung der Bass- und Höhenanhebung über einen Bereich von 20 dB. Wurde Volume also auf -15 dB gestellt ist die Musik nicht nur recht laut, sondern Bass und Treble der Loudness sind dann effektiv auf 0 dB. Siehe Kapitel 34.12 mit Diagrammen zum Frequenzgang über Volume.

Es spielt keine Rolle wie empfindlich die verwendeten Lautsprecher oder Kopfhörer sind, oder wie viel Anhebung bei Bass und Treble gewünscht ist – mit dem ADI-2 Pro kann dies jeder seinem eigenen Empfinden und Hören anpassen. Loudness funktioniert endlich so wie es von Beginn an hätte sein sollen - ein weiteres einmaliges Merkmal des ADI-2 Pro.

8.6 SRC (Sample Rate Conversion)

Der ADI-2 Pro verfügt über einen asynchronen Stereo Samplerate Konverter (SRC). Ein SRC erlaubt eine Wandlung der Samplefrequenz in Echtzeit. Der im ADI-2 Pro verwendete Konverter arbeitet praktisch verlustfrei, es entstehen bei der Umwandlung keinerlei hörbare Artefakte oder Störgeräusche. Die SRC arbeitet so überzeugend, dass wir guten Gewissens empfehlen können sie einfach eingeschaltet zu lassen – und damit alle Clock-Probleme von vornherein zu erschlagen. Was im *Basic Mode Auto* für den SPDIF-Eingang auch der Fall ist.

Der SRC bietet ein maximales Wandlungsverhältnis von 1:7 bzw. 7:1. 192 kHz kann in jede Samplefrequenz bis herunter zu 44,1 kHz gewandelt werden, 32 kHz in jede Samplefrequenz bis herauf zu 192 kHz. Höhere Samplefrequenzen als 192 kHz werden nicht unterstützt.

Ein SRC dient nicht nur der Wandlung der Samplefrequenz, sondern auch der Clock-Entkopplung. Mittels SRC lässt sich jedes nicht synchronisierbare Gerät (CD-Player, DAT etc.) im Verbund nutzen, so als wäre es synchronisierbar. Der SRC entkoppelt dabei Eingangs- und Ausgangsclock, setzt seine Ausgangsclock auf eine gemeinsame Referenz, und erlaubt so das Zusammenführen verschiedenster Clock-Quellen ohne jegliche Knackser oder Aussetzer.

Bei Nutzung der internen Clock arbeitet jeder SRC auch als Jitter-Killer. Der ADI-2 Pro ist jedoch mit SteadyClock FS ausgestattet, so dass er mit beliebiger Clock-Referenz als perfekter Jitter-Killer arbeitet. Da ein verjittertes Eingangssignal aber die Qualität der SRC beeinträchtigen kann, enthält der ADI-2 Pro eine *zweite SteadyClock* exklusiv für das SRC-Eingangssignal, um die Konvertierung so zuverlässig und transparent wie möglich auszuführen.

Ein SRC kann auch die Samplefrequenz erhöhen. 44.1 kHz Material kann in Echtzeit in 192 kHz gewandelt, und so mit dem DAC auf 192 kHz gestellt abgespielt werden. Der Nutzen dieser Wandlung ist aber zweifelhaft. Es wird keinerlei Inhalt hinzugefügt, also die exakt gleiche Information wiedergegeben. Lediglich das Oversampling-Filter des DACs ist nun weit außerhalb des Hörbereichs. Aber selbst die 44.1 kHz Filter des ADI-2 Pro liegen unhörbar hoch, und der Prozess der Samplefrequenzkonvertierung nutzt ähnliche Filter während der Wandlung.

8.7 Crossfeed

Kopfhörer öffnen den Raum - alles ist einfacher zu lokalisieren und zu unterscheiden, weil sie anders als Stereo-Lautsprecher das Klangfeld extrem links/rechts platzieren. Das aber gefällt nicht jedem, und so wünschen sich manche Anwender einen ähnlichen Höreindruck wie über einen normalen Lautsprecheraufbau. Diesen Wunsch erfüllt der ADI-2 Pro mit Crossfeed. Es reduziert den künstlichen Raumeindruck, den einige Produktionen aufweisen um auf Lautsprechern besser zu klingen, der aber auf Kopfhörern unnatürlich übertrieben wirkt. Zum Einsatz kommt die Bauer Binaural Methode in fünf verschiedenen Stärken der Verengung des oberen Frequenzbereichs. Dieses exzellente Verfahren, welches auch eine kleine Verzögerung und eine Korrektur des Frequenzgangs beinhaltet, funktioniert verblüffend gut, und ist eine weitere nützliche Ergänzung, als auch ein einmaliges Merkmal des ADI-2 Pro.

8.8 Grenzen des DSP

Es gibt nie genug DSP Rechenleistung – egal wie viel man bereitstellt (frustrierter Entwickler).

Das gilt selbst für den ADI-2 Pro. Obwohl er über einen recht leistungsfähigen 2,17 Giga FLOPS DSP Chip verfügt, und ihm das FPGA diverse Berechnungen abnimmt (RMEs virtueller DSP für Mixing/Routing, Level Meter, Filter, Crossfeed), fordern 768 kHz ihren Preis. Die Rechenleistung von 48 kHz wird dann auf ein Sechzehntel (!) reduziert. Selbst bei 384 kHz ist es schon ein Achtel von der bei 48 kHz. Der DSP im ADI- 2 Pro realisiert:

Bass/Treble und Loudness für 6 Kanäle 5-Band Parametric EQ für 6 Kanäle Standard Phase-Funktionen für 6 Kanäle Crossfeed für 4 Kanäle 30-Band Bi-quad Bandpass Filter Spectrum-Analyzer Peak Level Meter für alle Kanäle Displayinhalt und Ausgabe Volume Control auf 4 Kanälen Diverse Steuerfunktionen, wie Volume Ramp-up, Mute, Routing etc. Balanced Phones Mode DSD zu PCM Umwandlung (für Level Meter)

Bei 48 kHz keine große Sache, bei 192 kHz allerdings braucht es schon effiziente Programmierung und einen besseren DSP Chip. 768 kHz allerdings benötigt dann einen DSP mit der vierfachen Leistung des 'Besseren'. Daher führt an der Abschaltung einiger Funktionen bei höherer Samplefrequenz kein Weg vorbei. Glücklicherweise haben diese Einschränkungen in der Praxis nur geringe Auswirkungen:

Die im ADI-2 Pro verfügbaren hohen Samplefrequenzen übersteigen auch die Fähigkeiten der digitalen I/Os. AES und SPDIF sind beide auf 192 kHz beschränkt, und daran lässt sich nichts ändern (außer einem speziellen, 1-kanaligen SMUX Modus, siehe Kapitel 14.1.2, Setup Clock). Daher sind alle höheren Samplefrequenzen nur analog und im Modus USB nutzbar. Und im iOS-Betrieb mit iPad/iPhone und einer App, die solche Samplefrequenzen unterstützt (Neutron, Onkyo HF-Player etc.).

DSD kommt mit seinen eigenen Einschränkungen. DSD ist ein 1 Bit Datenstrom, der nicht digital prozessiert werden kann. Daher sind Funktionen wie Bass, Treble, Loudness, EQ etc. nicht möglich. Die Volume-Einstellung wird nicht mehr vom DSP, sondern dem DAC vorgenommen, der dazu intern DSD in PCM umwandelt - um eben Pegel- (Volume) Veränderungen möglich zu machen. Davon merken Sie aber nichts, die Bedienung am ADI-2 Pro erfolgt in beiden Modi identisch und übergangslos. Der DSP führt nun eine zusätzliche DSD zu PCM Umwandlung durch, um die Pegeldaten des DSD-Signals auf den Level Metern und dem Analyzer anzeigen zu können – ein weiteres einmaliges Merkmal des ADI-2 Pro.

Noch extremer ist **DSD Direct**. Wenn aktiviert (SETUP, Options, Device Mode / DSD) wird das DSD-Signal im DAC nicht zu PCM gewandelt, und daher gibt es auch keine Lautstärkeeinstellung mehr – außer den analogen Referenzpegeln, die sich zur Grobanpassung des Ausgangspegels bzw. der Lautstärke nutzen lassen. Nunmehr ohne echte Volume-Einstellung versehen deaktiviert der ADI-2 Pro im DSD Direct Modus sicherheitshalber den Phones Out 1/2. Das analoge Signal ist nur an den hinteren Ausgängen verfügbar. Phones Out 3/4 arbeitet weiter unabhängig, und kann den normalen DSD-Modus oder PCM nutzen, je nachdem was die Quelle liefert.

ADI-2 Pro FS

Bedienungs-Details für allgemeinen und Stand-Alone Betrieb

9. Betrieb und Bedienung

Allgemeines zu Betrieb und Bedienung des ADI-2 Pro enthalten Kapitel 5.2, Quick Start, und Kapitel 5.3, Bedienung am Gerät.

Der ADI-2 Pro kommt ab Werk mit *Basic Mode Auto* aktiviert. In diesem Modus konfiguriert sich das Gerät je nach angeschlossenen Kabeln automatisch, und bietet so schnellen, einfachen und intuitiven Betrieb:

- > Kein digitales Eingangssignal, kein USB = Preamp mode
- Digitales Eingangssignal vorhanden = AD/DA converter mode
- USB angeschlossen = USB mode (USB Interface Betrieb)

Diese Modi werden detailliert in Kapitel 17 erläutert. Der aktuelle Modus wird bei jedem Wechsel für 2 Sekunden im Bildschirm gezeigt (Info Message), und ein Mal nach dem Einschalten.

State Overview ist besonders nützlich um den Status der digitalen Eingangssignale und die aktuellen Einstellungen mit USB zu überprüfen. Er zeigt auch einige Warnhinweise, die Erklärungen zu fehlendem Audio geben können. Siehe Kapitel 15.3 für weitere Informationen.

Die folgenden Kapitel erklären alle Bedienelemente und Menüeinträge im Detail.

10. Bedienelemente auf der Front

10.1 Taster

Die vier beleuchteten Taster bieten einen Schnellzugriff auf wichtige Parameter in der Menüstruktur. Durch Druck auf einen der vier Taster wird das entsprechende Menü im Display angezeigt. Das Gerät merkt sich die letzte Auswahl pro Taste, eine Rückkehr zu einem gerade veränderten Parameter ist also einfach. Zum Verlassen des Menüs einfach die Taste erneut drücken, oder jede andere zweimal. Das Display kehrt zu dem Meter Screen zurück, der vor dem Eintritt ins Menü aktiv war.

10.2 Encoder (Drehgeber)

Die Encoder lassen sich sowohl endlos drehen als auch drücken, haben also auch eine Taster-Funktion. Was sie jeweils bewirken wird klar im Display angezeigt. Der große Volume-Knopf kontrolliert normalerweise die Lautstärke der Ausgänge 1/2 und 3/4. Seine aktuelle Zuweisung ist in der Statuszeile des Displays als Marker um die Volume-Werte herum ersichtlich.

Das Drehen der kleinen Encoder 1 und 2 verändert entweder den aktuellen Parameter, oder bewegt die Auswahlmaske (den Cursor) horizontal zu anderen Seiten. Über das Drücken der Encoder bewegt sich die Auswahlmaske vertikal, mit 1 nach oben und 2 nach unten, siehe die dreieckigen Pfeil-Symbole rechts im Display.

Beispiel: Taste SETUP drücken. Es erscheint die Seite Setups. Die 1 im Kreis rechts daneben zeigt an, dass durch Drehen weitere Seiten verfügbar sind. Durch Linksdrehen von Encoder 1 erscheinen die Options. Mit Drehen von Encoder 2 geht es horizontal durch alle Unterseiten der Options: SPDIF / Remap Keys, Device Mode / DSD, Clock. Durch Drücken des Encoders 2 bewegt sich der Cursor nach unten, durch Drücken von 1 wieder nach oben. Auf dem jeweils ausgewählten Feld signalisiert die 2 rechts, dass Drehen mit dem Encoder 2 den dortigen Parameter bearbeitet. Ändern Sie die Clock Source, um zu erfahren wie einfach es ist Einstellungen zu ändern.

Options	1
Clock	
Clock Source	INT 🔺
Sample Rate	44.1k
DSD Rate	no DSD 🔻
1/2 -8.0 3/4-10.0	AES 44.1

11. VOL

Die Taste VOL gibt Zugriff auf die erweiterte Volume-Seite mit Balance-Einstellung. Durch Drücken des großen Volume-Knopfs wechselt die Einstellung zwischen den Ausgängen 1/2 und 3/4, die dann über den großen Volume-Knopf oder Encoder 1 verändert werden können. Encoder 2 stellt die Balance ein. Die Einstellung von Volume und Balance ist auch im Menü I/O - Settings möglich, am unteren Ende der Liste.

Die Statuszeile unten im Display zeigt den aktuellen dB-Wert beider Volume-Einstellungen. Ein weißes Rechteck markiert den aktuell für Volume gewählten Ausgang.

Durch Druck auf Encoder 1 (B) wird der aktuelle Ausgang stumm geschaltet. Im blauen Feld erscheint *Main 1/2 - muted*. Ein nochmaliger Druck auf B hebt die Stummschaltung auf.

Durch nochmaliges Drücken der Taste VOL erscheint die Seite Dual Volume, die beide Volumes gleichzeitig anzeigt. Encoder 1 kontrolliert Volume 1/2, Encoder 2 Volume 3/4, und der große Volume-Knopf beide gleichzeitig. Damit lassen sich die Ausgänge auf individuelle Pegel einstellen, aber auch gleichzeitig verstellen. Die Linked-Verstellung arbeitet relativ. Individuelle Lautstärken bleiben bei Erhöhung und Absenkung im Verhältnis erhalten, selbst bei Einstellung auf Maximum oder Minimum.

Die beiden Ausgänge lassen sich im Dual Volume Screen jeweils durch Druck auf Encoder 1 (B) und Encoder 2 (T) stumm schalten.

Erneutes Drücken des Tasters VOL wechselt zurück zum vorherigen Top-Screen.

<u>Hinweis</u>: Die Seite Dual Volume ist im Modus Balanced Phones nicht verfügbar. Main Out hat ab Werk *Auto Ref Level* aktiviert, die aktuelle Lautstärke erscheint als *dBr* (dB relativ).

12. I/O

Das I/O Menü enthält alle Einstellungen der drei analogen Stereo- I/Os Analog Input, Main Output 1/2 und Phones Out 3/4. Die Unterseite Parametric EQ spiegelt die im grafischen EQ-Bildschirm vorgenommenen Einstellungen. Die Unterseiten Bass/Treble und Loudness sowie einige Phasenoptionen existieren nur für die beiden analogen Stereo-Ausgänge.

12.1 Analog Input

12.1.1 Settings

Die Unterseite Settings hat folgende Einträge:

Ref Level

Setzt den Referenz-Pegel der beiden analogen Eingänge 1/2. Verfügbar sind +4 dBu, +13 dBu, +19 dBu, +24 dBu, bezogen auf digitalen Vollpegel (0 dBFS).

Auto Ref Level

ON, OFF. Default: OFF. Im Fall einer Übersteuerung setzt Auto Ref Level den nächst höheren Ref Level. Dieser Prozess wird wiederholt bis +24 dBu erreicht ist. Falls Trim Gain aktiv ist wird es zuerst auf 0 dB gesetzt.

Analog Input		
Settings		
Ref Level	+19 dBu	9
		9
Auto Ref Level	OFF	•
Trim Gain	0.0 dB	
1/2-12.5 3/4 -6.0	AES 44	4.1

Trim Gain Left, Trim Gain Right

Digitale Verstärkung des Eingangssignals von 0 bis +6 dB, in Schritten von 0,5 dB. Haupt-Anwendung ist die Feineinstellung der Eingangsempfindlichkeit, so dass sie perfekt zum Ausgangspegel externer Geräte passt.

Phase Invert

Verfügbare Einstellungen sind OFF (Default), Both, Left and Right. Invertiert die Polarität des entsprechenden Kanals (auch als Phase 180° bekannt).

M/S-Proc

Aktiviert M/S-Processing. Monoanteile erscheinen auf dem linken Kanal, Stereoanteile rechts.

AD Filter

SD Sharp, SD Slow, Sharp, Slow. Für die Analog zu Digital Wandlung stehen vier Filter bereit. Default ist *SD Sharp*, welches den weitesten und linearsten Frequenzgang bei niedrigster Latenz ermöglicht. *SD Slow* besitzt ein deutlich weniger aggressives Filter, welches aber einen leichten Abfall im oberen Frequenzbereich verursacht. Sharp und Slow sind FIR Filter mit unterschiedlicher Impulsantwort. In der Technischen Referenz finden sich Messungen, die das Ergebnis in Frequenzgang und Impulsantwort illustrieren.

Dual EQ

OFF, ON. Default: OFF. Wenn aktiviert sind unterschiedliche Einstellungen des 5-Band Parametric Equalizers auf linkem und rechtem Kanal möglich.

AD Conversion

PCM, DSD. Default: PCM. Es wird erst ab 176,4 kHz Samplefrequenz in den DSD-Modus gewechselt. Die DSD Rate ändert sich mit der gewählten Samplefrequenz (SETUP - Options -Clock).

12.1.2 Parametric EQ

Die Unterseite Parametric EQ enthält folgende Einträge:

EQ Enable

ON, Off. Default: OFF. Schaltet den EQ aus oder ein.

Band 1 Type

Verfügbare Einstellungen: Peak, Shelf, High Cut und High Pass (Low Cut). Alle Filter sind von 20 Hz bis 20,0 kHz einstellbar, bei einer Güte von 0,5 bis 9,9. Cut/Pass hat eine feste Flankensteilheit von 12 dB/oct.

Band 2-4 Type

Nicht verfügbar, Voreinstellung Peak.

Band 5 Type

Verfügbare Einstellungen: Peak, Shelf und High Cut. Der High Cut ist einstellbar von 200 Hz bis 20,0 kHz, bei einer Güte von 0,5 bis 5,0, mit festen 12 dB/oct.

Band 1-5 Gain

Verfügbare Einstellungen: -12 bis +12 dB, in Schritten von 0,5 dB.

Band 1-5 Frequency

Einstellbar von 20 Hz (200 Hz Band 4/5) bis 20,0 kHz in Schritten zwischen 1 Hz und 100 Hz.

Band 1-5 Q

Die Güte (Quality factor) ist in Band 1 bis 3 einstellbar von 0,5 bis 9,9, in Band 3 und 4 bis 5,0, jeweils in Schritten von 0,1. Dies entspricht einer Bandbreite (bandwidth) von 2,54 (0,5), 0,29 (5,0) und 0,146 (9,9).

Analog Input			
Parametric EQ			
EQ Enable	ON 🔻	,	
Band 1 Type	Shelf		
Band 1 Gain	0.0 dB		
<u>1/2-12.5</u> 3/4 -6.0	AES 44.1		

Die Unterseite *Parametric EQ R* wird nur mit aktivierter Option Dual EQ On angezeigt. Sie enthält die gleichen Einträge wie oben beschrieben.

12.2 Main Output 1/2

12.2.1 Settings

Die Unterseite Settings enthält die gleichen Einträge wie bei Analog Input beschrieben, plus:

AD/DA Source

Die Quelle des Main Output 1/2 wird, basierend auf dem aktuellen Modus, automatisch gewählt:

Preamp mode: analoge Eingänge 1/2 USB: Wiedergabekanäle 1/2 Dig Thru mode: aktuelles digitales Eingangssignal AD/DA converter: aktuelles digitales Eingangssignal DAC: aktuelles digitales Eingangssignal und Clock

Daher ist der Eintrag AD/DA Source meist ausgegraut. Nur in den Modi AD/DA und DAC lässt sich das Eingangssignal aus Auto, SPDIF, AES und Analog manuell wählen. Dies erlaubt eine Festlegung der Konvertierung zu Ausgang 1/2 mit einem der aktuellen digitalen Eingangssignale.

Ref Level

Setzt den Referenz-Pegel der analogen Ausgänge 1/2. Verfügbar sind +4 dBu, +13 dBu, +19 dBu, +24 dBu, bezogen auf digitalen Vollpegel (0 dBFS). Diese Einstellung gilt auch für die vorderen Ausgänge PH 1/2, wobei PH 1/2 einen 3 dB höheren Ausgangspegel aufweist. Daher wird aus der Einstellung +4 dBu +7 dBu am Kopfhörerausgang, +19 dBu wird zu +22 dBu. Diese beiden Einstellungen sind somit identisch zu Hi-Power Off und On am Phones Output 3/4.

Auto Ref Level

ON, OFF. Default: ON. Siehe Kapitel 21.3.

Mono

OFF, ON, to Left. Default: OFF. Die Option *to Left* sendet die Summe aus links und rechts nur zum linken Ausgang.

Width

Stereo-Basisbreite. 1.00 entspricht vollem Stereo, 0.00 Mono, -1.00 vertauschten Kanälen.

M/S-Proc

Aktiviert M/S-Processing. Monoanteile erscheinen auf dem linken Kanal, Stereoanteile rechts.

Crossfeed

OFF, 1, 2, 3, 4, 5. Der Bauer Stereo zu Binaural Crossfeed Effekt emuliert Lautsprecherwiedergabe durch eine Reduzierung der Basisbreite im Höhenbereich. Einstellbar in fünf Stufen.

DA Filter

Short Delay Sharp, Short Delay Slow, Sharp, Slow, NOS. Der Digital/Analog-Wandler bietet mehrere Oversampling-Filter. Default ist *SD Sharp*, mit dem weitesten und linearsten Frequenzgang sowie geringster Latenz. *SD Slow* besitzt einen leichten Abfall im höheren Frequenzbereich, arbeitet aber mit einem weniger aggressiven Filter. *Sharp* und *Slow* sind ähnlich, mit etwas höherer Latenz. *NOS* ist das flachste, und daher am meisten die Höhen beeinflussende Filter, bietet aber eine sehr gute Impulsantwort. In der Technischen Referenz finden sich Messungen, die das Ergebnis in Frequenzgang und Impulsantwort illustrieren.

Hinweis: NOS deaktiviert die Option De-Emphasis.

De-Emphasis

Auto, OFF, ON. Default: Auto. Manuelle De-/Aktivierung des DAC De-Emphasis Filters. Siehe Kapitel 34.4.

Volume

Spiegelt die direkte Volume-Einstellung über den Volume-Knopf und Encoder 1/2. Volume ist zwischen -96 dB und +6 dB, meist in Schritten von 0,5 dB, einstellbar. Schnelles Drehen erhöht die Größe der Schritte. Bei mittlerer Drehgeschwindigkeit folgt die Änderung in dB dem erwarteten Wechsel. Die feinsten Schritte werden nur bei sehr langsamem Drehen durchlaufen.

Lock Volume

Deaktiviert die Lautstärkeeinstellung über den großen VOLUME-Knopf. Volume im Menü ist weiter aktiv, und dient zur Einstellung des gewünschten Ausgangspegels. Aktiviertes Lock wird im VOL- und Volume-Screen sowie der Statusbar angezeigt.

Balance

Spiegelt die Einstellung Balance im Bildschirm Volume. Einstellbar von L 100 (left) über <C> (center) bis R100 (right). Eine schnelle Drehung springt von L oder R zu <C>, und umgekehrt.

Mute

Schaltet den Kanal stumm. Auch über den VOL Screen und Remap Function Keys schaltbar.

12.2.2 Bass/Treble

Die Unterseite Bass/Treble enthält die folgenden Einträge:

B/T Enable

OFF, ON. Default: ON

Bass Gain

Aktuelle Bass-Verstärkung des aktuellen Kanals, wie über Encoder 1 (B) eingestellt. Einstellbar zwischen -6 dB und +6 dB in Schritten von 0,5 dB.

Bass Freq

Grenzfrequenz des Shelf Bass-Filters. Einstellbar von 20 Hz bis 150 Hz in Schritten von 1 Hz. Default: 85 Hz.

Bass Q

Die Güte (Quality factor) des Filters ist von 0,5 bis 1,5 einstellbar. Default 0,9.

Main Output 1/2			
Bass/Trebl	е	0	
Bass Gain	0.0 dB	•	
Bass Freq	85 Hz		
Bass Q	0.9		
<u>1/2-12.5</u> 3/4 -6.0	AES 44	1.1	

Treble Gain

Aktuelle Treble-Verstärkung des aktuellen Kanals, wie über Encoder 2 (T) eingestellt. Einstellbar zwischen -6 dB und +6 dB in Schritten von 0,5 dB.

Treble Freq

Grenzfrequenz des Shelf Treble-Filters. Einstellbar von 3 kHz bis 10 kHz in Schritten von 100 Hz. Default: 6,5 kHz.

Treble Q

Die Güte (Quality factor) des Filters ist von 0,5 bis 1,5 einstellbar. Default 0,7.

12.2.3 Loudness

Die Unterseite Loudness enthält die folgenden Einträge:

Enable

ON, OFF. Default: OFF.

Bass Gain

Maximum der Bassanhebung. Einstellbar zwischen +1 dB und +10 dB in Schritten von 0,5 dB. Default: +7 dB

Treble Gain

Maximum der Höhenanhebung. Einstellbar zwischen +1 dB und +10 dB in Schritten von 0,5 dB. Default: +7 dB

Low Vol Ref

Referenzpegel für höchste Bass/Treble Anhebung, referenziert zur Volume-Einstellung in dB. Verfügbarer Bereich: -90 dB bis -20 dB. Default: -30 dB. Eine Volume-Einstellung unterhalb dieses Wertes wird die maximale Bass/Treble Anhebung haben, alle darüber eine niedrigere. 20 dB oberhalb der Low Vol Ref ist die Bass/Treble Anhebung dann gleich Null.

12.3 Phones Output 3/4

Die Unterseite Settings enthält die bei Main Output 1/2 beschriebenen Einträge, plus:

Source

Default: Auto. Die Quelle des Ausgangs Phones Out 3/4 ist jederzeit manuell auswählbar. Verfügbare Optionen sind: Auto, AES, SPDIF, Analog, USB 1/2, USB 3/4. Auto bedeutet hier nicht nur das aktuelle oder verfügbare Eingangssignal, sondern auch Kanäle 1/2.

Hi-Power

OFF, ON. Default: OFF. Referenz-Pegel für 0 dBFS ist +7 dBu am Ausgang. Mit Hi-Power aktiv ist der Referenz-Pegel 15 dB höher, also +22 dBu.

Auto Ref Level

ON, OFF. Default: OFF. Siehe Kapitel 21.3.

Phones Out 3/4		
Settings		
Source	Auto	
Hi-Power	ON	0
		Ŭ
Auto Ref Level	OFF	•
1/2-12.5 3/4 -6.0	AES 44	1.1

13. EQ

Die Taste EQ öffnet eine grafische EQ-Darstellung (Bode Plot) zur schnellen und übersichtlichen Einstellung des EQ. Sie ist für alle analogen I/Os verfügbar. Die Menü Unterseite I/O - Settings - Parametric EQ spiegelt die hier vorgenommenen Einstellungen.

In der Titelzeile lässt sich mit Encoder 1 zwischen Analog Input, Main Output 1/2 und Phones Out 3/4 wechseln. Eine Drehung von Encoder 2 springt durch alle 5 Bänder, wie in der Parameterzeile zu sehen. Dies erlaubt eine schnelle Betrachtung/Check/Verifizierung aller Parameter aller Bänder, ohne Gefahr zu laufen diese zu verändern.

Mit Druck auf Encoder 2 springt der Cursor in die Parameterzeile, alle Werte nun in weißer Farbe. Jetzt ist es möglich alle Parameter durch Drehen der drei Encoder einzustellen. Der Volume-Knopf verändert den Gain, Encoder 1 die Frequenz, Encoder 2 die Güte (Q). Alle Änderungen werden in Echtzeit als Frequenzgang dargestellt, was es sehr einfach macht die gewünschten Resultate zu erzielen.

Ein Druck auf Volume wechselt zum nächsten Band.

Die fünf Bänder zeigen das aktuell gewählte dank unterschiedlicher Farben klar an: Band 1 Rot, Band 2 Gelb, Band 3 Grün, Band 4 Hellblau, Band 5 Dunkelblau.

Band 1 und 5 lassen sich in den Modus Peak oder Shelf schalten, sowie Hi Pass/Hi Cut. Dazu wird der Encoder 2 erneut gedrückt, so dass der Cursor auf das kleine Filtersymbol unten rechts springt. Es ist dann nicht mehr ausgegraut. Das Drehen des Encoders 2 schaltet nun durch alle verfügbaren Optionen, wobei sich das Symbol passend ändert.

Ein weiterer Druck auf Encoder 2 wechselt zur grafischen EQ Preset Auswahl. Das Drehen von Encoder 2 blättert durch alle vorhandenen Presets, wobei die jeweilige Frequenz-Kurve angezeigt wird, und in der Parameterzeile der Name des Presets erscheint. In diesem Bildschirm sind Volume, die Volume-Auswahl und die Kanalselektion (Encoder 1) ebenfalls verfügbar.

Hinweise

Die Frequenzganggrafik zeigt übersichtlich und präzise die Auswirkungen der Filter. Wenn sich Filter überlappen beeinflussen sie sich gegenseitig. Dies lässt sich ausnutzen um mehr als 12 dB Beeinflussung zu erreichen, oder schwierige Frequenzgangkorrekturen zu erzeugen.

Der ADI-2 Pro besitzt einen internen Headroom von 24 dB. Extreme Anhebungen mit mehrfacher Überlappung können zu interner Übersteuerung führen. Diese würde aber von den Level Metern unterhalb des EQs oder des Kanals angezeigt. Das Reduzieren des Ausgangs-Volumes verhindert Clipping, solange der Headroom von 24 dB nicht überschritten wird. In der Praxis ist dies immer der Fall, der ADI-2 Pro wird intern nicht übersteuern.

Der EQ kann an den digitalen Ausgängen Verzerrungen verursachen, wenn er im *Analog Input* zum Einsatz kommt. Die Level Meter zeigen auch diesen Fehlerfall klar an. Abhilfe schafft die Wahl eines höheren Referenzpegels, so dass der Eingang unempfindlicher wird.

Wird die Frequenzgangkurve als graue Linie dargestellt ist der EQ deaktiviert. Es gibt zwei Wege ihn zu aktivieren:

- Taste EQ erneut drücken um zur Seite EQ Enable / Presets zu wechseln, siehe unten.
- Taste I/O drücken, aktuellen Kanal wählen, Unterseite Parametric EQ, EQ Enable ON oder OFF

Beim zweiten Druck auf die Taste EQ erscheint **EQ Enable / Presets**. Auf dieser Seite werden der EQ komfortabel ein- und ausgeschaltet, sowie EQ-Presets gespeichert und geladen.

Mit Encoder 1 wechselt man zwischen den Unterseiten Analog Input, Main Output 1/2 und Phones Out 3/4. Diese Unterseiten haben die folgenden Einträge:

EQ Enable

Default: OFF. Optionen sind ON, OFF, L, R (L und R nur wenn Dual EQ aktiv ist).

Preset Select

Ermöglicht 22 verschiedene EQs zu speichern und zu laden. Der erste Eintrag, Manual, enthält aktuelle, ungespeicherte EQ-Einstellungen. Der zweite Eintrag, Temp, enthält die Einstellungen eines geladenen und dann modifizierten Presets. Es lassen sich daher drei verschiedene EQ-Einstellungen schnell ändern und vergleichen: der manuelle, die gespeicherten und der modifizierte Preset, ohne die Änderungen beim Anhören anderer EQ-Presets zu verlieren.

EQ Enable / Presets		
Phones Out 3/4		
EQ Enable	ON 💊	
Preset Select	Manual 🔻	
Name	Manual	
1/2-10.0 3/4-10.0	AES 48.0	

Der letzte Eintrag (21, Clear) entspricht dem Factory Default mit allen Bändern auf 0 dB. Er ist nicht als Speicherplatz verfügbar, sondern dient dem Reset durch Überschreiben. Ein derart zurückgesetzter, also leerer Speicherplatz wird mit **(lin)** gekennzeichnet.

Die Presets sind unabhängig von den Setups und werden nicht mit gespeichert (siehe Kapitel 14.2). EQ-Presets sind daher immer verfügbar, egal welches Setup geladen wurde. Das Setup enthält allerdings die aktuellen EQ-Einstellungen, welche beim Laden in Manual landen.

Name

Ermöglicht das Editieren des Namens des aktuellen Presets, und das Eingeben während des Speicherns. Durch Drehen von Encoder 2 wird ein Zeichen ausgewählt, durch Druck auf Encoder 2 bewegt sich der Cursor nach rechts zur nächsten Eingabe. Nach der letzten Eingabe springt der Cursor auf das Feld *Store to.* Der Name kann 14 Zeichen lang sein. Durch Drehen von Encoder 1 erhält man Zugriff auf alle vorhandenen Namen, was die Eingabe deutlich beschleunigt.

Gespeicherte Presets lassen sich ohne weiteren Speichervorgang jederzeit umbenennen.

Beim Verlassen des Namensfeldes wird der Name automatisch rechts ausgerichtet. Es lassen sich nachträglich vorne und hinten Zeichen hinzufügen. Ein schneller Dreh nach links springt zum Leerzeichen, welches auch zum schnellen Löschen von Zeichen dient. Verfügbare Symbole und Buchstaben sind:

Leerzeichen, Aa bis Zz, + - / () * ; : . , ! # \$ & < > = ' I @, 0 - 9

Save to

Mit Encoder 2 wählt man den gewünschten Speicherplatz für das zu speichernde Preset. Zum Speichern ist Encoder 2 eine Sekunde lang zu drücken.

14. SETUP

Der Taster SETUP gibt Zugriff auf zwei Hauptseiten: Options und Load/Store all Settings. Options enthält die Unterseiten SPDIF / Remap Keys, Device Mode / DSD, Clock, Phones und Display.

14.1 Options

14.1.1 SPDIF / Remap Keys

SPDIF / Remap Keys enthält die folgenden Einträge:

SPDIF In

Einstellungen: Auto, Coax, Optical. Default: Auto.

SRC (Sample Rate Converter)

Verfügbare Einstellungen: OFF, AES In, SPDIF In. Hinweis: Bei Anliegen eines DoP-Signals (DSD) wird der SRC automatisch temporär deaktiviert.

Optical Out

Verfügbare Einstellungen: SPDIF, ADAT. Während sich der Eingang automatisch auf das empfangene Signal einstellt, ist beim Ausgang eine manuelle Konfiguration notwendig. Im Dig Thru Modus wird der Ausgang bei ADAT am Eingang automatisch auf ADAT geschaltet, und alle acht Eingangskanäle unverändert weitergereicht.

Remap Keys

OFF, ON. Default: OFF. Ermöglicht eine Zuweisung 40 verschiedener Funktionen/Aktionen zu den vier Funktionstastern, konfigurierbar in den folgenden vier Einträgen:

VOL Key, I/O Key, EQ Key, SETUP Key.

Verfügbare Funktionen/Aktionen:

Setup 1 bis 9, Mono 1/2, Mono 3/4, Mono to L 1/2, Mono to L 3/4, Mute 1/2, Mute 3/4, Mute all, Loudness 1/2, Loudness 3/4, EQ In 1/2, EQ Out 1/2, EQ Out 3/4, BT Out 1/2, BT Out 3/4, EQ+B/T+Ld 1/2, EQ+B/T+Ld 3/4, Toggle Ph/Line, EQ+B/T+Ld 1-4, Polarity, Crossfeed 1-5, DA SD Sharp, DA SD Slow, DA Sharp, DA Slow, DA NOS, AutoDark, Toggle View.

Die ursprüngliche Funktion der Taste, der Aufruf des Menüs, ist über ein längeres Drücken der Taste (0,5 s) weiterhin möglich.

Diagnose-Daten

Test Results

Bitte ignorieren. Keine Anwender-bezogenen Daten.

SW Version

Zeigt die aktuelle Versionsnummer und das Datum der internen DSP-Software.

14.1.2 Clock

Clock Source

Verfügbar sind: Auto, INT (Internal, Master), AES, SPDIF.

Sample Rate

Verfügbar sind 44.1, 48, 88.2, 96, 176.4, 192, 352.8, 384, 705.6 und 768 kHz. Dies sind auch die extern unterstützen Samplefrequenzen (AES/SPDIF Input).

OptionsImage: ClockClock SourceINT •Sample Rate768kDSD RateDSD256 •1/2 -8.03/4-10.0AES 768.0

Bei der Nutzung von 352,8 und 384 kHz Samplefrequenz zeigt das Level Meter einen einzelnen Kanal am SPDIF-Ausgang. Dito am Eingang wenn 192 kHz Samplefrequenz anliegen. Grund ist ein spezieller SMUX-Modus im ADI-2 Pro. Wird er mit *Octa Speed* betrieben, verteilt der ADI-2 Pro die Daten des linken analogen Kanals auf die AES/SPDIF-Kanäle links und rechts, bei halber Samplefrequenz – 192 kHz. Die Nutzung einer Mess-Software wie <u>HpW Works</u>, (<u>www.hpw-works.com</u>), welche diesen Modus unterstützt (2x speed), und jedes 192 kHz fähigen RME-Audiointerfaces, ermöglicht so analoge Messungen mit 384 kHz Samplefrequenz über SPDIF – zumindest eines Kanals. Der große Vorteil gegenüber einem direkten USB-Anschluss: bei Nutzung von SPDIF optisch ist das zu testende Gerät vom Mess-System (Interface/Computer) galvanisch getrennt.

14.1.3 Device Mode / DSD

Basic Mode

Verfügbar sind: Auto, AD/DA, USB, Preamp, Dig Thru und DAC. Siehe Kapitel 17.

CC-Mode

Verfügbare Optionen sind Stereo und Multi-channel. Der ADI-2 Pro unterstützt zwei Class Compliant Modi: 2-Kanal I/O, welches Samplefrequenzen bis 768 kHz selbst auf iOS-Geräten erlaubt, und 6/8-Kanal für vollen Zugriff auf alle I/Os gleichzeitig. Im Modus Multi-channel sind maximal 192 kHz möglich. Zur Änderung des Modus darf USB nicht angeschlossen sein.

Options	
Device Mode /	DSD 🔺
Basic Mode	Auto 👝
CC-Mode	Stereo 🔻
Dig. Out Source	Default
1/2-15.0 3/4-10.0	AES 48.0

Dig. Out Source

Default, Main Out. Kopiert das Signal Main Out 1/2 (mit EQ und Volume) auf die digitalen Ausgänge AES und SPDIF/ADAT. Nützlich beim Anschluss aktiver Monitore mit Digitaleingang.

DSD Direct 1/2

OFF, ON. Default: OFF. Wenn aktiviert nutzt eine DSD-Wiedergabe den Direct DSD Modus über die hinteren Ausgänge 1/2. Da DSD Direct alle DSP-Berechnungen und die Lautstärkeeinstellung umgeht, besteht die einzige Möglichkeit der Lautstärkeänderung in der Auswahl anderer Referenz-Pegel. Daher sind im Modus DSD Direct die Ausgänge Phones 1/2 abgeschaltet.

DSD Filter

Im Modus DSD Direct helfen HF-Filter das hochfrequente DSD-Rauschen zu verringern, welches andere Geräte negativ beeinflussen kann. Während 50 kHz für DSD64 und 150 kHz für DSD128 und 256 optimiert ist, kann der Anwender beide bei jeder DSD-Rate auswählen.

DSD Detection

Default: ON. Manuelle Abschaltung der automatischen DSD-Erkennung für SPDIF, AES, USB.

14.1.4 Phones

Dual Phones

OFF, ON. Default: OFF. Dual Phones ON aktiviert den Kopfhörerausgang PH 1/2. Default ist OFF, da PH 3/4 der Haupt-Kopfhörerausgang ist, und exklusiv genutzt werden sollte, außer es sind zwei Kopfhörer anzuschließen.

Mit Dual Phones On und zwei Kopfhörern eingesteckt wechselt ein Druck auf VOLUME zwischen 1/2, 3/4 und gemeinsamer Lautstärkeeinstellung (mit dem Marker über beiden). Wird VOLUME gedreht erscheint sofort der Dual Volume Bildschirm.

Bal Phones Mode

OFF, ON, Auto. Default: OFF. Im Modus Balanced Phones liefert der Ausgang PH 3/4 den linken Kanal, Ausgang PH 1/2 den rechten Kanal. Kapitel 18 enthält weitere Details. Auto aktiviert den Balanced Phones Mode automatisch, sobald beide Ausgänge einen eingesteckten Stecker detektieren. Diese Funktion deaktiviert den Modus DSD Direct temporär falls aktiv.

Hinweis: Wenn aktiv werden die hinteren Ausgänge automatisch stumm geschaltet.

Phones <=> Line

OFF, 1/2, 3/4, 1/2+3/4. Default: OFF. Aktiviert wechselseitiges Mute zwischen Phones Out und hinterem Line Out. Durch Drücken des VOLUME-Knopfes für eine halbe Sekunde wird so zwischen hinten (Lautsprecher) und vorne (Kopfhörer) umgeschaltet. Diese Funktion ist per *Remap Function Keys* auch von einer der vier Funktionstasten steuerbar.

Mute v. TRS 1/2

ON, OFF. Default: ON, aber ausgegraut. Schaltet die hinteren Ausgänge ab sobald ein Stecker in PH 1/2 detektiert wird. Hinweis: Diese Funktion erfordert den Modus Dual Phones auf ON. Bei Mute v. TRS 1/2 ON weisen Phones 1/2 und Mains Out 1/2 getrennte Parametersätze auf. Obwohl beide Ausgänge wechselweise das gleiche Signal wiedergeben, sind alle Einstellungen (Settings, EQ, BT) unterschiedlich, und werden im Hintergrund auch so gespeichert.

Mute v. TRS 3/4

ON, OFF. Default: ON. Auf ON schaltet ein Stecker in PH 3/4 die hinteren Ausgänge 1/2 ab.

14.1.5 Display

Display Mode

Verfügbare Einstellungen: Default, Dark. Das dunkle Schema invertiert den weißen Hintergrund und schwarze Nummern/Text zu schwarzem Hintergrund und hellgrauen Nummern/Text.

Meter Color

Green, Cyan, Amber. Default: Green. Farbe der Level Meter im PCM und DSD-Modus.

Options	0
Display	
Display Mode	Dark 🔊
Meter Color	Green 🔻
Hor. Meter	Post-FX
1/2-15.03/4-10.0	AES 48.0

Hor. Meter

Das horizontale Level Meter des Analyzers kann den Spitzenpegel vor dem DSP Processing (**Pre**, entspricht aktuellem Eingangspegel des SPDIF IN und dem USB Wiedergabesignal)), nach dem Processing mitsamt Volume (**Post**), oder beide gleichzeitig anzeigen (**Dual**). Die dünnere äußere Linie zeigt den Pre-Pegel. Bei Dual zeigen die Zahlen rechts den Post-Pegel.

AutoDark Mode

OFF, ON. Default: OFF. Bewirkt eine automatische Abschaltung aller LEDs und des Displays (Ausnahme: Standby-Taster) nach 10 Sekunden, wenn keine Bedienung durch den Benutzer mehr erfolgt. Ein Tastendruck und die Drehung eines Encoders schalten die LEDs und das Display temporär wieder ein. Eine Info- oder Warnmeldung erscheint für 3 Sekunden.

Show Vol. Screen

ON, OFF. Default: ON. Beim Drehen des VOLUME-Knopfs erscheint der Volume-Screen.

LCD Brightness

Einstellbar von 20% bis 100%. Default ist 80%.

LCD Tint Control

Einstellbar von -8 (gelblich) bis 8 (bläulich). Dient zum Ausgleich von Farbabweichungen des Displays und zum Abstimmen auf den persönlichen Geschmack.

14.2 Load/Store all Settings

Diese Option erlaubt das Abspeichern des kompletten Gerätezustands als *Setup* in neun Speicherplätzen. Die EQ-Presets sind dabei nicht enthalten, sie werden separat gespeichert und sind mit jedem Setup aufrufbar. Die aktuellen Einstellungen des EQ werden jedoch gespeichert, und während des Ladens eines Setups in den EQ-Speicherplatz *Manual* geschrieben.

Die Seite Setups, Load/Store all Settings, enthält die folgenden Einträge:

Setup Select

Einstellbar sind Load 1-9, Factory (Reset All) und Store 1-9.

Name

Namenseingabe für das aktuelle Setup während des Speicherns. Ändern eines vorhandenen Namens: Setup laden und mit neuem Namen auf dem gleichen Speicherplatz speichern. Details zur Eingabe siehe *EQ* – *Name*.

Setups		
Load/Store all Settings		
Setup Select	Load 1	
Name	•	
Start	Press 1s	
1/2 -4.0 3/4-10.0	AES 48.0	

Start

Press 1s. Das Drücken des Drehgebers 2 für mindestens 1 Sekunde löst die ausgewählte Funktion aus (Load/Store).

Rückkehr zum Werkszustand

Encoder 1 und den Taster VOL während des Einschaltens gedrückt halten. Dies resettet den Speicher auf den Werkszustand. Vom Anwender gespeicherte Setups und EQ-Presets sind davon nicht betroffen. Das gleiche passiert bei Auswahl von *Load Factory*. Hinweis: der Reset ist unvollständig, wenn das Gerät während des Resets an USB angeschlossen ist.

Werden Encoder 1, 2 und der Taster VOL während des Einschaltens gedrückt gehalten, erfolgt auch ein Reset der Namen der Setups und EQ-Presets.

15. Top Screens

Der ADI-2 Pro verfügt über vier verschiedene Meter Screens: globales Level Meter, welches alle Pegel aller I/Os gleichzeitig zeigt, Analyzer für den Audioinhalt der analogen Ein- und Ausgänge 1/2 und 3/4, State Overview mit dem digitalen Status von AES, SPDIF und USB, und einen dunklen Volume-Bildschirm mit umfassenden Informationen.

Per Druck auf Encoder 1 oder 2 wechselt man zwischen diesen, wenn ein solcher gerade aktiv ist. Um sie schnell aufzurufen reicht es, einen der vier Taster mehrmals zu drücken.

15.1 Global Level Meter

Zeigt das Signal aller Eingänge und Ausgänge. Die Beschriftung oben bezieht sich auf die Eingänge Analog Input, AES und SPDIF, dann Ausgänge Analog 1/2, Analog 3/4, AES und SPDIF.

Bei Samplefrequenzen höher als 192 kHz werden AES und SPDIF ausgegraut, da nicht mehr funktional.

Dies sind Peak Level Meter mit Peak-Hold Funktion, bei höheren Samplefrequenzen bandbegrenzt bis 40 kHz.

15.2 Analyzer

Der Analyzer basiert auf RMEs berühmtem Spectral Analyzer in DIGICheck. Er nutzt 29 Biquad Bandpassfilter zur effektiven Trennung der Bänder, liefert so eine außergewöhnliche musikalische Visualisierung. Durch Nutzung sorgfältig gewählter Anstiegs- und Abfallzeiten ist die Anzeige lebendig, aber trotzdem gut abzulesen. Darüber hinaus nutzt sie RMEs eigene *Max LR* Technik zur Vermeidung der 6 dB höheren Anzeige von monauralen Signalen, und keiner Anzeige bei gegenphasigen Signalen.

Dank des hochauflösenden IPS-Panels sind auch kleinste Details klar zu erkennen. Eine Analyse des Musikinhalts ist selbst aus einigem Abstand möglich.

Der Analyzer arbeitet bei jeglicher Samplefrequenz, und selbst mit DSD. Es gibt keine einzustellenden Parameter. Der angezeigte Frequenzbereich ist immer der vom Menschen hörbare, 20 Hz bis zu 20 kHz.

Um auch DC-Anteile anzuzeigen benutzt das unterste Band keinen Bandpass, sondern einen Tiefpass, und erfasst den gesamten Bereich von 0 Hz bis 30 Hz an. Mit ungewöhnlichen Signalen kann es daher zu einer etwas höheren Pegeldarstellung als erwartet kommen.

Anders als in den meisten anderen Lösungen wird keine FFT (Fast Fourier Transform) benutzt. RMEs Spectral Analyzer führt eine echte Bandpass-Filterberechnung durch, wie in professioneller Hardware. Der Frequenzabstand zwischen den Filtern entspricht dem menschlichen Hören. Hochoptimierter Code ermöglicht einen 30 Band Analyzer mit 60 dB Anzeigebereich, steilen Filtern und 1 dB Schritten pro Band auf dem DSP des ADI-2 Pro, selbst bei 768 kHz.

Der wichtigste Einsatz eines Spectral Analyzers ist die Darstellung der in Musik und Sprache enthaltenen Pegel und Frequenzanteile. Der Analyzer zeigt Pegel- und Frequenzen selbst an den Grenzen des Gehörs - oder denen der verwendeten Lautsprecher und Kopfhörer. Die visuelle Darstellung schult das Gehör, zeigt grobe Fehler auf, und zeigt was manchmal unbemerkt bleibt. Beispielsweise können viele Lautsprecher keine Frequenzen unterhalb 30 Hz wiedergeben. Ein Blick auf den Analyzer schafft Klarheit über das Geschehen im Untergrund.

15.3 State Overview

Der Bildschirm State Overview ist ein typisches RME-Merkmal. Seit 20 Jahren gibt RME seinen Kunden mehr Informationen an die Hand als 'geht, geht nicht'. Die Settingsdialoge unserer Audiointerfaces beinhalten eine detaillierte Input Status Analyse, um Aufbau und Fehlersuche zu vereinfachen und zu beschleunigen. Zusätzlich liefert RME zu jedem Audiointerface DIGI-Check, eine Windows/Mac Software, welche Pegel, Channel Status, Inhalt des Datenstroms, die wahre Samplefrequenz und vieles mehr analysiert.

Wenn der ADI-2 Pro angeschlossen, aber kein Ton zu hören ist, dann hilft der *State Overview*. Er dient zum Aufspüren von Problemen in einfach zu verstehender Weise. Obwohl er (absichtlich) schlicht aussieht, übertrifft seine detaillierte Analyse jedes andere, ähnliche Gerät.

Zu sehen sind der Status der digitalen Eingänge SPDIF optisch und koaxial, AES, der Status der USB Verbindung samt übertragenem Audio, und die aktuelle Einstellung des SRC. Die derzeitige Clock-Quelle ist in voller Länge angegeben, obwohl sich diese Info auch abgekürzt in der Statuszeile findet.

State Overview				
Input	Sync	SR	State	Bit
SP co	lock	44.1	cons	16
AES	sync	44.1	pro	24
USB	conn	705.6	DSD	
SRC	AES			
Clock	Source	;	INT	
SPDIF	WARN	NING E	MPHA	SIS
1/2 0.	0 3/4	-6.0	INT -	44.1

Die untere Statuszeile zeigt immer die aktuelle Lautstärkeeinstellung der Ausgänge 1/2 und 3/4, den aktuell für Lautstärkeeinstellung selektierten Ausgang (über ein Rechteck um den Namen), die aktuelle Clock-Quelle, und die momentane Samplefrequenz. Bei Sync-Problemen blinkt die Samplefrequenz und/oder färbt sich rot. Diese Informationen sind in fast allen Bildschirmen sichtbar, und geben so einen schnellen Überblick über den derzeitigen Zustand. Der Bildschirm State Overview ergänzt dies nun mit vielen Details.

Der gewählte SPDIF-Eingang, manuell oder automatisch, wird als **SP op** oder **SP co** (optisch oder koaxial) angezeigt. Die Spalte SYNC zeigt No Lock, also kein Signal am Eingang, als – –. Und **lock** sowie **sync**, je nach aktuellem Clock Status des jeweiligen Eingangs. Bei aktivem SRC zeigt der entsprechende Eingang immer lock, nicht sync, weil die Phasenbeziehung der externen und internen Clock keine Rolle mehr spielt.

Bei USB erscheint conn (connected) sobald eine gültige USB-Verbindung aufgebaut ist.

Die Spalte SR zeigt die von der Hardware gemessene Samplefrequenz der Eingänge SPDIF und AES. Sie zeigt sogar Werte an, die am ADI-2 Pro selbst nicht einstellbar sind, wie 32, 64 und 128 kHz. Bei USB wird die Samplefrequenz nicht gemessen, sondern vom externen Computer oder iOS-Gerät bestimmt, und hier zwecks Verifizierung dargestellt (bis zu **768 kHz**).

Die Spalte State zeigt den Channel Status, Consumer (**cons**) oder Professional (**pro**), der eingehenden Signale SPDIF und AES. Wird ein DoP (DSD over PCM) Header detektiert erscheint **DSD**. Bei USB zeigt die Spalte State den aktuellen Kanalmodus, **2/2** oder **6/8**, oder **DSD** wenn ein DoP Header vorhanden ist.

Die Spalte Bit zeigt die Anzahl der im Audiosignal von AES und SPDIF gefundenen Bits. Zu beachten ist, dass ein als 16 Bit angezeigtes 24 Bit-Signal tatsächlich nur 16 Bit besitzt. Ein als 24 Bit erkanntes Signal kann aber auch aus 16 Bit Audio plus 8 Bit Rauschen bestehen...

SPDIF und AES können aber auch AC-3 und DTS enkodiertes Surround-Audio transportieren. Dieses Signal klingt wie zerhacktes Rauschen bei Vollpegel. Daher prüft die Empfangsschaltung im ADI-2 Pro auf eine Non-Audio Kennung im Channel Status. Wenn vorhanden wird das Signal bereits am Eingang stumm geschaltet. Die Warnmeldung SPDIF NON-AUDIO in rot erklärt, warum kein Audio an den analogen Ausgängen erscheint.

Auch Emphasis, eine spezielle Höhenanhebung aus den frühen Tagen der digitalen Audiotechnik, wird erkannt, und als SPDIF WARNING EMPHASIS in rot angezeigt. Siehe Kapitel 34.4. Die Einbeziehung des SRC Status hilft Fehler zu finden, die sich durch die vielen, quer über die Menüstruktur verteilten Optionen, nicht ausschließen lassen. Beispielsweise kann der SRC aktiv sein, aber das SPDIF-Signal zeigt kein Audio. Ein kurzer Blick auf die State Overview ergibt, dass der **SRC** auf dem falschen Eingang **AES** aktiv ist...

15.4 Dark Volume

Dieser Bildschirm wurde als Alternative zu den anderen Top Screens hinzugefügt, welche selbst bei Auswahl des dunklen Anzeigeschemas in bestimmten Situationen störend sein können. *Dark Volume* zeigt die aktuellen Volume-Werte beider analoger Ausgänge, den Referenz-Pegel, den aktuellen Bass/Treble Gain, sowie den Modus Balanced Phones. Er ist zurückhaltend in der Helligkeit, trotzdem auch in heller Umgebung ablesbar, und hat keine flackernden oder flimmernden Elemente (Level Meter). Volume- und Bass/Treble-Einstellungen sind direkt möglich, was ihn nicht nur visuell sehr angenehm macht.

Um trotz fehlender Pegelanzeige eine Übersteuerung durch Volume, PEQ oder B/T erkennen zu können, sind die beiden großen Volume-Zahlen mit der Over-Erkennung der beiden analogen Ausgänge gekoppelt. Sie wechseln ihre Farbe bei Übersteuerung zu rot.

Wie bei den anderen Top Screens gilt: sobald gewählt wird er zum Default-Bildschirm, der automatisch nach dem Einschalten, oder der Rückkehr aus einem Menü erscheint.

16. Warnhinweise

Der ADI-2 Pro zeigt verschiedene Warnhinweise und gibt in bestimmten Situationen Hinweise.

Hi-Power Mode Active

Wenn der Hi-Power Modus aktiv ist, das Volume auf -15 dB oder höher gestellt ist, und ein Kopfhörer eingesteckt wird, erinnert dieser Warnhinweis den Anwender daran die aktuelle Lautstärkeinstellung zu prüfen, und sicherzustellen, dass die angeschlossenen Hörer der hohen Ausgangsleistung gewachsen sind ohne zerstört zu werden. Das Audiosignal bleibt leise bis der Volume auf -15 dB oder tiefer gestellt wurde. Der Volume-Knopf ist automatisch auf dem aktuellen Kopfhörerausgang aktiv. Sobald -15 dB erreicht sind wird die Lautstärke langsam auf den vorherigen Wert angehoben.

Das Drücken von Encoder 1 entfernt diesen Hinweis sofort, die Lautstärke wird innerhalb von 2 Sekunden auf den vorherigen Wert angehoben.

Dieser Hinweis verschwindet auch, wenn der Stecker wieder aus der Buchse entfernt wird.

Dieser Hinweis erscheint nicht, wenn Volume auf einem Wert niedriger als -15 dB steht, oder das Gerät mit eingestecktem Kopfhörer eingeschaltet wurde.

Dual Phones Mode required

Ausgang PH 1/2 ist ein zusätzlicher Ausgang für zwei besondere Anwendungsfälle: die Nutzung zweier Kopfhörer und den Modus Balanced Phones. Daher erscheint beim Einstecken in den Ausgang PH 1/2 ein Warnhinweis, dass dieser Ausgang an die hinteren Ausgänge 1/2 gekoppelt ist, und nur benutzt werden sollte wenn er wirklich benötigt wird.

PH 1/2 bleibt deaktiviert bis der Dual Phones Modus im SETUP aktiviert wurde.

Overload / Short detected

Eine interne Überlastung kann durch zu hohe Ausgangspegel und zu niedrige Lastimpedanzen entstehen. Auch ein Kurzschluss im Stecker oder Kabel aktiviert die Überlast-Erkennung. Dann trennt ein Relais den Hörer von der Extreme Power Ausgangsstufe. Wird der Kopfhörerstecker entfernt, und nach frühestens einer Sekunde wieder eingesteckt, ist der Ausgang wieder aktiv.

Dieser Ablauf soll den Anwender zur Prüfung von Kabel und Stecker anregen. Z.B. kann eine nicht vollständig eingesteckte Stereoklinke einen Kurzschluss verursachen.

DC detected

Die Erkennung von Gleichspannung ist wichtig, um eine Zerstörung der empfindlichen Hörer durch unhörbaren Stromfluss zu vermeiden. Da der ADI-2 Pro vollständig DCgekoppelt ist, vom DAC bis zum Ausgang, führt digitaler Vollpegel mit 0 Hz zu einer Spannung von 15 V, die jeden angeschlossenen Kopfhörer sofort zerstört. Falls die Ausgangsstufe selbst ausfällt könnte das Gleiche passieren. Daher schalten beide Kopfhörerausgänge bei 1,8 V DC ab.

Power Fail

Sinkt die Versorgungsspannung unter 9,3 V wird das interne Netzteil der analogen I/Os abgeschaltet (Überstromschutz). Der digitale Teil läuft jedoch sogar mit 5 Volt. Bei Anschluss eines falschen Netzteiles kann das Gerät scheinbar vollständig funktionieren – nur Audio geht weder rein noch raus. Dieser Bildschirm weist auf das Problem der Unterspannung hin.

Internal Error

Beim Einschalten führt das Gerät einen Selbsttest aus. Schlägt dieser fehl wird USB deaktiviert, so dass weder Aufnahme noch Wiedergabe funktionieren. Bitte wenden Sie sich in einem solchen Fall an den jeweiligen RME-Vertrieb.

to enable Dual Phones mode

DC detected PH 3/4 deactivated. Pull out PH plug 3/4 to reset output state.

Power Fail Analog I/Os disabled. Check DC power supply.

Internal Error USB Audio disabled. Der ADI-2 Pro zeigt während des normalen Betriebs zusätzlich diverse **Info Messages**, um den aktuellen Status anzuzeigen, und auf potentielle Probleme hinzuweisen.

Im Modus AD/DA und DAC führt ein Non-Audio Channel Status zum Mute der DA-Sektion. Die Info *Non-Audio signal at SPDIF input* gibt einen Hinweis auf fehlendes Audio am analogen Ausgang.

Im Modus USB erscheint beim Channel Status Emphasis die Info *Emphasis detected at SPDIF input*. Dies erinnert den Anwender daran, dass die Emphasis-Kennung bei Aufnahme auf einen Computer verloren geht.

Beim Wechsel des Basic Operation Modus erscheint der neue Modus für 2 Sekunden im Display (Preamp mode active, AD/DA mode active, USB mode active, Dig Through mode active).

Wenn zwei Stecker in die Buchsen der Front eingesteckt werden, und der Balanced Phones Modus Auto aktiv ist, wird kurz *Balanced Phones mode active* angezeigt.

17. Modi

17.1 Auto

Der ADI-2 Pro ist ein AD/DA Konverter, USB Audiointerface, USB DAC, analoger Kopfhörerverstärker, Formatwandler und digitaler Monitor, mit erweiterter Flexibilität und Vielseitigkeit, ausgestattet mit 5 Eingangsquellen und 7 Ausgangswegen. Normalerweise bedeutet dies eine überladene Menüstruktur und endlose Suchen im Menü, um das Gerät selbst in einfachen Anwendungen zum Laufen zu bekommen.

Um solche frustrierenden Situationen zu vermeiden enthält der ADI-2 Pro einen Auto Setup Modus (und wird damit aktiv ausgeliefert). Wenn *SETUP – Options – Device Mode / DSD – Basic Mode* auf *Auto* steht, konfiguriert sich das Gerät je nach angeschlossenen Kabeln selbst:

- Preamp: Analog In zu Analog Out (intern Digital Out zu In). Dieser Modus ist aktiv wenn weder ein digitales Eingangssignal noch USB erkannt wird.
- AD/DA: Konverter, Analog In zu allen digitalen Ausgängen, Digital In zu allen analogen Ausgängen. Dieser Modus wird aktiv sobald das Gerät ein digitales Signal erkennt, welches dann auch die Signalquelle wird. Erkennt es mehr als ein Signal ist die abzuhörende Quelle vom Anwender manuell auszuwählen. Der SRC ist per Default aktiv und SPDIF zugewiesen. Clock Mode ist Slave zu AES In, wechselt aber auf die jeweils erkannte Quelle (Auto).
- USB: oder Interface. Wird USB erkannt sind alle Ein- und Ausgänge mit USB verbunden. USB hat Priorität gegenüber dem Konverter-Modus. Im Setup lässt sich ein 2- oder 8-Kanal Modus auswählen. In den meisten Fällen ist 2-Kanal die bessere Wahl.

Es sind noch zwei weitere Modi verfügbar, allerdings nur durch manuelle Aktivierung. Der *Digital Through Monitor* (automatische Clock- und Quellenwahl des digitalen Eingangs plus internes D zu D Routing) erlaubt ein Einschleifen in und Abhören von AES, SPDIF und ADAT. Bei ADAT stehen nur die Kanäle 1/2 zum Abhören bereit, aber alle acht Kanäle werden durchgeschleift. Der Modus *DAC* kombiniert Clock- und Quellenwahl für eine besonders einfache Nutzung im Heimbereich.

In allen Modi (außer DAC) ist Phones Out 3/4 frei konfigurierbar. Jede mögliche Quelle kann unabhängig von den Ausgängen 1/2 abgehört werden. Dies gilt auch für USB: bei manueller Auswahl einer der obigen Modi sind alle Eingänge weiterhin auf USB verfügbar, und Ausgänge 3/4 geben nach manueller Auswahl der Quelle USB wieder.

Das Gerät merkt sich alle Einstellungen, und lädt diese automatisch beim Einschalten.

Die folgenden Seiten enthalten Blockdiagramme und weitere Details zu allen Modi.

17.2 Preamp

Preamp: Analog In zu Analog Out (intern Digital Out zu In).

Dieser Modus lässt sich manuell durch Auswahl von *Basic Mode – Preamp* aktivieren. Das Gerät schaltet automatisch in den Modus Preamp wenn *Basic Mode* auf *Auto* steht, und weder ein digitales Eingangssignal noch USB erkannt wird.

Analoge Eingangssignale werden automatisch an die analogen Ausgänge gesendet. Eine analoge Quelle lässt sich über die hinteren analogen Ausgänge oder die Kopfhörerausgänge abhören - verstärkt, EQ'd, prozessiert, mit anderem Pegel, und Impedanz- oder symmetrisch/unsymmetrisch konvertiert.

Die Default Samplefrequenz dieses Modus ist 192 kHz, das Optimum aus vollständig verfügbarer DSP Rechenleistung und überragender klanglicher Transparenz. Eine manuelle Änderung der Samplefrequenz ist möglich, und wird vom Gerät gespeichert.

Das untere Diagramm zeigt wie der analoge Eingang an alle digitalen Ausgänge gleichzeitig gesendet wird. Jegliche DSP-Einstellung (EQ, Phase etc.) des analogen Eingangs findet sich auf allen Ausgängen wieder. Außerdem wird das prozessierte Eingangssignal unabhängig an den analogen Ausgängen erneut mit den entsprechenden Ausgangs-Settings prozessiert.

ADI-2 Pro Preamp Mode

<u>Hinweis</u>: Zur Vereinfachung des Diagramms und für eine bessere Übersicht ist USB Aufnahme nicht dargestellt. In allen Modi werden alle Eingangssignale per USB zum Host gesendet. Im Modus Multi-channel drei separate Stereopaare, im Stereo-Modus nur der analoge Stereo-Eingang.

USB Wiedergabekanäle 3/4 können nur im Modus Multi-channel abgehört werden. Im Stereo-Modus wird bei Auswahl von USB 3/4 das Signal der Kanäle 1/2 wiedergegeben.

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 auch an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitor mit digitalen Eingängen.

17.3 AD/DA Converter

AD/DA: Konverter Modus. Analog In zu allen digitalen Ausgängen, Digital In zu allen analogen Ausgängen.

Dieser Modus lässt sich manuell durch Auswahl von *Basic Mode – AD/DA* aktivieren. Das Gerät schaltet automatisch in den Modus AD/DA wenn *Basic Mode* auf *Auto* steht, und ein digitales Eingangssignal erkannt wird.

Das erkannte Eingangssignal wird auch zur Signalquelle. Wird mehr als ein Signal erkannt ist die abzuhörende Quelle vom Anwender manuell auszuwählen (I/O - Output Channel x/x - Settings - Source). Der SRC ist per Default aktiv und SPDIF zugewiesen, wird aber automatisch deaktiviert wenn ein DoP-Signal (DSD) anliegt. Clock Mode ist Slave zu AES In, wechselt aber auf die jeweils erkannte Quelle (Auto).

ADI-2 Pro A/D-D/A Mode

<u>Hinweis</u>: Zur Vereinfachung des Diagramms und für eine bessere Übersicht ist USB Aufnahme nicht dargestellt. In allen Modi werden alle Eingangssignale per USB zum Host gesendet. Im Modus Multi-channel drei separate Stereopaare, im Stereo-Modus nur der analoge Stereo-Eingang.

USB Wiedergabekanäle 3/4 können nur im Modus Multi-channel abgehört werden. Im Stereo-Modus wird bei Auswahl von USB 3/4 das Signal der Kanäle 1/2 wiedergegeben.

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitore mit digitalen Eingängen.
17.4 USB

USB: Interface Modus.

Dieser Modus lässt sich manuell durch Auswahl von *Basic Mode – USB* aktivieren. Das Gerät schaltet automatisch in den Modus USB wenn *Basic Mode* auf *Auto* steht, und eine USB-Verbindung erkannt wird. Bei Auto hat USB Priorität gegenüber dem Konverter-Modus.

Im Modus USB sind alle Eingänge auf USB geroutet, alle Ausgänge erhalten ihr Signal von USB. In *SETUP – Options – Device Mode / DSD – CC-Mode* kann das Gerät als 2-Kanal (Stereo) oder 6/8-Kanal (Multi-channel) Device konfiguriert werden. Samplefrequenzen höher als 192 kHz und DSD128/256 sind nur im 2-Kanal Modus verfügbar. Daher ist dieser Modus ab Werk voreingestellt.

Class Compliant Stereo mode

Im Modus 2-Kanal / Stereo werden nur die analogen Eingänge als Aufnahmesignal an USB gesendet, und das Stereo USB Wiedergabesignal ist gleichzeitig an allen analogen und digitalen Ausgängen vorhanden.

Die beiden Blockdiagramme zeigen die kleinen Unterschiede zwischen diesen Modi.

ADI-2 Pro USB Mode, 2 channels

USB Wiedergabekanäle 3/4 können nur im Modus Multi-channel abgehört werden. Im Stereo-Modus wird bei Auswahl von USB 3/4 das Signal der Kanäle 1/2 wiedergegeben.

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitore mit digitalen Eingängen.

Class Compliant Multi-channel mode

Bei aktiver USB-Verbindung werden alle digitalen und analogen Eingänge (6 Kanäle) als USB-Aufnahmekanäle gesendet. Auch die USB-Wiedergabe beliefert alle Ausgänge getrennt (8 Kanäle).

Im 6/8-Kanal Modus sind alle I/Os separat nutzbar. Der Kopfhörerausgang 3/4 spielt die USB Wiedergabekanäle 1/2 ab, wenn seine Source (Quelle) auf Auto steht (Default).

ADI-2 Pro USB Mode, 6/8 channels

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitore mit digitalen Eingängen. Die Wiedergabekanäle 5/6 und 7/8 sind dann nicht mehr nutzbar.

Reihenfolge der Kanäle im USB-Betrieb

I/O	Record	Playback
1/2	Analog 1/2	Analog 1/2
3/4	AES	Analog 3/4 (Standardzuweisung Phones 3/4)
5/6	SPDIF (ADAT)	AES
7/8	-	SPDIF (ADAT)

17.5 Digital Through

Dieser zusätzliche Modus ist eine manuelle Option, und nicht per *Basic Mode Auto* verfügbar. Er muss manuell über die Auswahl *Basic Mode – Dig Thru.* aktiviert werden.

Der Zweck des Digital Through Monitors steht exakt in seinem Namen. Ein einzelnes digitales Eingangssignal durchläuft das Gerät, und lässt sich gleichzeitig an den analogen Ausgängen abhören. Eine automatische Clock- und Quellenwahl des digitalen Eingangs plus internes D zu D Routing erlaubt ein Einschleifen in und Abhören von AES, SPDIF oder ADAT. Bei ADAT stehen nur die Kanäle 1/2 zum Abhören bereit, aber alle acht Kanäle werden durchgeschleift.

Das digitale Signal wird nicht einfach nur vom Eingang zum Ausgang durchgereicht, sondern komplett neu erstellt. Es wird von SteadyClock FS regeneriert, und auf Wunsch auch Clockentkoppelt oder mit Up-/Downsampling prozessiert, wenn der SRC aktiviert ist. Ohne SRC aktiv werden die enthaltenen 24 Bit Audiodaten Bit-transparent weitergegeben.

Da jegliches digitale Eingangssignal an den drei digitalen Ausgängen gleichzeitig verfügbar wird, arbeitet der Dig Thru Modus auch als digitaler Formatkonverter, als auch als Verteiler (eine Quelle auf drei Ziele).

ADI-2 Pro Digital Thru Mode (with Monitoring)

<u>Hinweis</u>: Zur Vereinfachung des Diagramms und für eine bessere Übersicht ist USB Aufnahme nicht dargestellt. In allen Modi werden alle Eingangssignale per USB zum Host gesendet. Im Modus Multi-channel drei separate Stereopaare, im Stereo-Modus nur der analoge Stereo-Eingang.

USB Wiedergabekanäle 3/4 können nur im Modus Multi-channel abgehört werden. Im Stereo-Modus wird bei Auswahl von USB 3/4 das Signal der Kanäle 1/2 wiedergegeben.

Die Option Digital Out Source - Main Out ist in diesem Modus nicht verfügbar.

17.6 DAC

Dieser zusätzliche Modus ist eine manuelle Option, und nicht per *Basic Mode Auto* verfügbar. Er muss manuell über die Auswahl *Basic Mode – DAC* aktiviert werden.

Dieser Modus vereinfacht Bedienung und Quellenwahl, wenn die Nutzung des ADI-2 Pro dem eines typischen HiFi-DAC entspricht:

- Einfacher 2 Kanal/Stereo Betrieb
- Einfachste Umschaltung zwischen den abzuhörenden Quellen, wie USB und SPDIF

In diesem Modus bestimmt die Quellenwahl des Main Out 1/2 auch die Clockquelle des Gerätes. Der ADI-2 Pro wird sich bei Umschaltung auf SPDIF/AES automatisch auf das SPDIF/AES Eingangssignal synchronisieren, also im Clock Modus Slave arbeiten. Bei Umschaltung auf USB arbeitet das Gerät im Clock Modus Master (USB asynchron).

Im Modus DAC arbeitet die AD-Wandlung immer mit der zuletzt von USB eingestellten Samplefrequenz. Phones Out 3/4 geben immer die gleiche Quelle wie Main Out 1/2 wieder, besitzen aber ansonsten wie üblich vollkommen unabhängige Einstellungen (Vol, EQ etc).

ADI-2 Pro DAC Mode

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitore mit digitalen Eingängen.

18. Balanced Phones Mode

Im Balanced-Betrieb kommen zwei identische Verstärker pro Seite eines Kopfhörers zum Einsatz. Verglichen mit normaler, Masse-bezogener Arbeitsweise, verdoppelt sich die vom Kopfhörer/Lautsprecher gesehene Spannung. Die empfangene Leistung erscheint sogar vervierfacht.

Aufgrund der von Kopfhörern benötigten, vergleichsweise geringen Leistung, und seinen bereits sehr leistungsstarken Extreme Power Ausgängen, wurde der Balanced Phones Modus des ADI-2 Pro nicht auf Leistung, sondern auf Klang optimiert. Kapitel 34.3 enthält alle Details und Informationen rund um die erstaunliche *Advanced Balanced mode* Implementierung des ADI-2 Pro.

Im Advanced Balanced Modus steigt der maximale Ausgangspegel des ADI-2 Pro auf +13 dBu für Hi-Power Off und +28 dBu für Hi-Power On. Der Rauschabstand erhöht sich von 117 dB / 120 dBA auf 120 dB / 123 dBA. Kapitel 34.14 zeigt die verfügbare Ausgangsleistung an den Kopfhörerausgängen als übersichtliches Diagramm.

Der Modus Balanced Phones erfordert Kopfhörer mit separater Verkabelung des rechten und linken Kanals, jeweils 2 Leitungen, 4 Leitungen gesamt.

wird Ausgang PH 3/4 zum linken Ausgangskanal, mit dem vormals linken Kanal als L+ und dem vormals rechten als L-. PH 1/2 wird zum rechten Ausgangskanal, mit dem vormals linken Kanal als R+ und mit dem vormals rechten Kanal als R-. Gnd/Masse beider Stecker bleibt unbelegt.

Es existieren verschiedene Lösungen zum Anschluss eines Balanced-Kopfhörers, aber leider kein Standard.

Recht verbreitet ist die Verwendung eines 4-poligen männlichen XLR Steckers auf der Kopfhörerseite. Das Bild zeigt, wie ein Adapterkabel die beiden Ausgänge des ADI-2 Pro mit dem Kopfhörer verbindet, unter Nutzung zweier Stereo (TRS) Klinkenstecker und einer weiblichen, 4-poligen XLR-Kupplung.

Kapitel 14.1.3 erklärt die Aktivierung des Modus Balanced Phones.

<u>Hinweise</u>: Der Modus Balanced Phones deaktiviert den Modus DSD Direct temporär, wenn Direct DSD aktiviert ist (Darstellung im Menü: (ON) in Klammern). Die rückwärtigen Ausgänge 1/2 sind während der Nutzung des Balanced-Modus stumm geschaltet, da an diesen ebenfalls das Balanced Phones Signal 1/2 anliegt, welches an den hinteren Ausgängen ein phasengedrehtes Mono-Signal darstellt.

19. DSD

19.1 Allgemeines

DSD (Direct Stream Digital) ist ein Datenstrom mit 1 Bit Auflösung, aber mehrfacher Samplefrequenz der CD. DSD64 entspricht 64 mal 44,1 kHz = 2.8 MHz, DSD128 5,6 MHz, DSD256 11,2 MHz. Versionen mit mehrfacher Rate von 48 kHz existieren ebenso, bis hinauf zu 12,2 MHz.

Um DSD-Daten über SPDIF, AES oder sogar USB zu übertragen, hat sich *DSD over PCM* (DoP) als Standard etabliert. Es nutzt die niedrigsten 16 Bit eines 24 Bit Wortes, um Probleme beim versehentlichen Abspielen als PCM zu vermeiden (leise). Die oberen 8 Bit sind mit einem DoP Header zur Signalerkennung versehen. DoP ist reines DSD, es erfolgt keine Konvertierung zu PCM.

Der ADI-2 Pro unterstützt DSD auf verschiedene Weise. Per AES oder SPDIF empfangen wird der Bildschirm State Overview **DoP** anzeigen, und der DAC sofort vom PCM- in den DSD-Modus umschalten. Dieser Vorgang ist nach außen vollkommen transparent, die Wiedergabe erfolgt durchgängig ohne weitere Interaktion. Allerdings sind auf einem Bit-Stream keine DSP-Berechnungen möglich. Daher sind EQ, Crossfeed, Bass/Treble, Loudness und andere vom DSP bereitgestellte Audiofunktionen mit DSD automatisch inaktiv. Dies wird unter anderem durch eine Klammer um die aktivierte Funktion herum dargestellt, z.B. EQ Enable - (ON).

Die Erkennung von DoP funktioniert auch per USB. Eine DSD-Wiedergabe über USB (State Overview zeigt **DSD**) erfolgt mit 176,4/192 kHz für DSD64, 352,8/384 kHz für DSD128, und 705.6/768 kHz für DSD256. Unter Windows sind WDM/WASAPI derzeit auf 384 kHz limitiert. Die höchste Samplefrequenz, und damit der höchste DSD-Modus, erfordert daher ASIO. RMEs Treiber unterstützt DSD over ASIO im DoP-Format und als ASIO native. Der ADI-2 Pro ist daher mit vielen Programmen kompatibel, wie HQPlayer und JRiver, aber auch mit DSD Aufnahmesoftware wie Merging's Pyramix, Sound-It und VinylStudio.

19.2 DSD Direct (nur Wiedergabe)

Um die Lautstärke digital einstellen zu können müssen die DSD-Daten in PCM konvertiert werden. Dies geschieht automatisch im DA-Konverter-Chip. Im Modus DSD Direct gibt es keine PCM-Konvertierung – und damit auch keine Lautstärkeeinstellung mehr. Nach der Aktivierung von DSD Direct im Menü des ADI-2 Pro (SETUP - Options) nutzen die Wiedergabekanäle 1/2 diesen Modus sobald ein DSD-Signal empfangen wird. Das analoge Signal ist nur an den hinteren Ausgängen verfügbar, mit einer groben Lautstärkeeinstellung über die vier analogen Referenzpegel. Ausgänge PH 1/2 sind deaktiviert. Ausgänge PH 3/4 verbleiben im normalen DSD-Modus, und haben daher auch eine Lautstärkeeinstellung.

Der Ausgabepegel für Vollaussteuerung liegt 3,5 dB niedriger als bei normaler DSD-Wiedergabe. Die maximalen analogen Ausgangspegel sind daher jeweils 3,5 dB unter den Referenzwerten. Für einen sinnvollen Vergleich zwischen den Modi DSD und DSD Direct empfiehlt es sich, das Volume bei DSD auf -3,5 dB einzustellen.

Im Modus DSD Direct ist keine Nutzung von Balanced-Kopfhörern möglich. Daher wird im Modus Balanced Phones die Funktion Direct DSD temporär deaktiviert.

19.3 DSD Wiedergabe

Während einer DSD-Wiedergabe sind alle DSP-Funktionen aller Kanäle, auch wenn diese PCM übertragen, temporär deaktiviert, was in diversen Menüs über ein (ON) in Klammern signalisiert wird. Analyzer und Level Meter zeigen DSD-Signale in bläulicherer Farbe, die jeweilige Betriebsart ist daher sofort erkennbar.

Der Wechsel zwischen PCM und DSD ist mit einem leisen Knacksgeräusch verbunden. Der ADI-2 Pro verzichtet zur Klangoptimierung auf eine verlustbehaftete, analoge Lautstärkeregelung, kann dieses leise Geräusch am Ausgang des DAC daher nicht unterdrücken.

Knackser beim Titelwechsel sind bei DSD leider häufiger zu beobachten, selbst wenn die Stücke alle im gleichen DSD-Format vorliegen. Dies liegt am 1-Bit Format, welches anders als PCM absolute Stille und DC-Freiheit am Anfang und Ende eines Titels erfordert, damit im Sinne des 1-Bit Streams der Übergang kein Zufallssignal (Störgeräusch) darstellt. Leider sind viele frei erhältliche Stücke am Anfang und Ende nicht 'sauber'. Werden diese nacheinander von einem Player abgespielt, lässt sich an den Level Metern des ADI-2 Pro erkennen, dass das zu hörende Störgeräusch nicht vom ADI-2 DAC stammt, sondern dem Gerät genau so als abzuspielendes Signal präsentiert wird. Denn die Level Meter liegen digital vor dem DAC.

<u>Hinweis</u>: Eine DSD Wiedergabe per USB ist nur auf den Wiedergabekanälen 1/2 möglich. Eine DSD64 Wiedergabe im Modus Multichannel über USB 3/4 führt nicht zur Aktivierung des DSD-Modus.

19.4 DSD Aufnahme

Der ADI-2 Pro gibt die AD-gewandelten Daten nicht nur als PCM, sondern auch als DSD Datenstrom aus. Über *I/O* - *Analog Input* - *AD Conversion* lässt sich der Wandler von PCM (Default) in den Modus DSD schalten. Die DSD-Daten gelangen dann je nach Modus an die Ausgänge AES und SPDIF (DoP), USB (DoP via ASIO oder ASIO native), und die analogen Ausgänge 1/2 und 3/4 (rückgewandelt per DAC).

Alle Modi, Routings, Source-Optionen und Blockschaltbilder in Kapitel 17 gelten auch für den DSD-Modus, bei Wiedergabe wie auch Aufnahme. Einziger Unterschied: bei DSD ist der Schaltungsteil *DSP* überbrückt (kein Audioprocessing). Alle DSP-Funktionen aller Kanäle, auch wenn diese aktuell PCM übertragen, sind bei DSD temporär deaktiviert, was in diversen Menüs über ein (ON) in Klammern signalisiert wird.

Ein gemischter Betrieb ist möglich. Während einer DSD-Aufnahme, also AD-Wandlung, kann ein PCM-File per DA abgespielt und angehört werden. Selbst das Abspielen von DSD über Kanal 1/2 und gleichzeitiges Abhören von AES oder Analog In per 3/4 ist möglich, egal ob die Quellen PCM oder DSD sind.

Einschränkungen existieren, sind aber bei PCM und DSD identisch. Beispielsweise lässt sich im Modus AD/DA wegen der Limitierung der Schnittstellen AES und SPDIF auf 192 kHz nur DSD64 nutzen, nicht aber DSD128 oder DSD256. Das ist bei PCM nicht anders, dort können 384 und 768 kHz ebenfalls nicht genutzt werden. Und wegen der gemeinsamen Clock sind keine beliebigen Kombinationen möglich. Z.B. Aufnahme mit DSD64 (176,4 kHz), und gleichzeitig eine Wiedergabe mit 192 kHz - auch dies ist im reinen PCM-Betrieb nicht möglich.

Programme zur Aufnahme von DSD Audio:

Name	OS	URL
VinylStudio	Win/Mac	www.alpinesoft.co.uk
Sound-It!	Win/Mac	http://www.ssw.co.jp
Pyramix	Win	www.merging.com
AudioGate4	Win/Mac	www.korg.com

19.5 DSD Level Meter

Während die meisten, selbst als 'Hi-End' angesehenen DACs den Anwender bei DSD-Betrieb in einen Blindflug zwingen, zeigt der ADI-2 Pro auch hier sowohl Pegel als auch spektralen Inhalt an. Der DSP führt dazu eine zusätzliche Umwandlung DSD zu PCM durch, um die Pegeldaten der analogen I/Os auf den Level Metern und dem Analyzer anzeigen zu können.

Diese zusätzliche Wandlung ist für die digitalen I/Os im Global Level Meter nicht verfügbar. Dort erscheint DSD so wie es sich auf der Schnittstelle darstellt (und anhört): bei DoP als konstantes Rauschsignal mit circa -24 dBFS.

19.6 Unendliche Weiten...

Der ADI-2 Pro ermöglicht erstmalig Konfigurationen, Einstellungen und Anwendungen, die viele Fragen beantworten können. Gibt es wirklich einen klanglichen Unterschied zwischen verschiedenen DA-Filtern mit verschiedenem Impulsantwortverhalten? Probieren Sie es aus! Gibt es wirklich einen Klangunterschied zwischen DSD zu PCM und DSD Direct? Probieren Sie es aus! Klingt eine AD/DA Wandlerstrecke per PCM je nach Samplefrequenz unterschiedlich? Probieren Sie es aus! Klingt die gleiche Wandlerstrecke anders, und wie klingt sie überhaupt, wenn man DSD benutzt? Probieren Sie es aus!

ADI-2 Pro FS

Eingänge und Ausgänge

20. Analoge Eingänge

Der ADI-2 Pro besitzt zwei analoge Line-Eingänge, die Pegel bis zu +24 dBu akzeptieren. Die elektronische Eingangsschaltung arbeitet servosymmetrisch. Sie kann sowohl symmetrische (Stereo-Klinkenstecker, XLR) als auch unsymmetrische (Mono-Klinkenstecker, XLR) Eingangssignale korrekt verarbeiten, bei unveränderter Pegelreferenz.

Bei Verwendung von unsymmetrischen Kabeln am XLR-Eingang sollte deren Pin 3 mit Masse verbunden sein, da es sonst zu Störgeräuschen durch den offenen negativen Eingang der symmetrischen Eingangsstufe kommen kann.

Zur Nutzung der Eingänge mit unsymmetrischen Cinch: einfach einen Standard-Adapter Mono-Klinke zu Cinch-Buchse einstecken. Damit ist jedes Cinch-Kabel mit dem ADI-2 Pro nutzbar.

Ein wichtiger Punkt bei einem AD-Wandler ist die korrekte Anpassung des Eingangspegels, damit der Wandler stets im optimalen Bereich arbeitet. Der ADI-2 Pro besitzt intern hochwertige elektronische Schalter, welche eine perfekte Anpassung an die gebräuchlichsten Studio-Pegel +4 dBu, +13 dBu, +19 dBu und +24 dBu ermöglichen.

Zusätzlich ist eine digitale Verstärkung (Trim Gain) von 0 bis +6 dB in Schritten von 0,5 dB vorhanden, um den ADI-2 Pro präzise an den Referenzpegel externer Geräte anzugleichen. Die 6 dB digitale Verstärkung machen den gesamten Pegelbereich von +13 dBu bis +24 dBu in Schritten von 0,5 dB verfügbar. Durch den etwas größeren Schritt von 9 dB zwischen +4 dBu und +13 dBu gibt es eine kleine Lücke zwischen +4 dBu und +7 dBu.

Trim Gain kann auch die Eingangsempfindlichkeit auf -2 dBu für 0 dBFS erhöhen. Naturgemäß verringert eine digitale Verstärkung den Rauschabstand um den eingestellten Verstärkungswert. In realen Anwendungen wird dies wohl niemals ein Problem sein, da der schlechteste Wert von -112 dB (bei +6 dB Gain @ +4 dBu) immer noch deutlich besser sein wird als jede an den ADI-2 Pro angeschlossene Quelle.

Ref	Vrms	Digital Gain +6 / 0 dB	Vrms
+24 dBu	12,28	+18 dBu to +24 dBu	+18 = 6,15
+19 dBu	6,9	+13 dBu to +19 dBu	-
+13 dbu	3,46	+7 dBu to +13 dBu	+7 = 1,73
+4 dBu	1,23	- 2 dBu to +4 dBu	- 2 = 0,62

Der analoge Eingang besitzt auch einen optionalen Übersteuerungsschutz. **Auto Ref Lev**(el) wechselt zum nächst höheren Referenzpegel wenn eine Übersteuerung erkannt wird.

21. Analoge Ausgänge

21.1 Allgemeines

Die hinteren Ausgänge TS (Monoklinke) und XLR, sowie die Front-Ausgänge PH 1/2 werden alle vom gleichen DAC gespeist, geben daher das gleiche Signal aus - die Kanäle 1/2. Alle besitzen eigene Treiberstufen mit unterschiedlichen Ausgangspegeln, siehe nächstes Kapitel.

Alle Ausgänge besitzen Schaltungen zur Unterdrückung von Störgeräuschen beim Ein- und Ausschalten, die sogar wirken wenn nicht der Standby-Taster, sondern ein Wegfall der Versorgungsspannung zum Ausschalten führt.

Rauschabstand und Klirrfaktor sind auf allen Ausgängen nahezu identisch.

Beide Kopfhörerausgänge besitzen Mute-Relais, Überstromerkennung, Gleichspannungsschutz, Sensorbuchsen und DSP-Steuerung, wie das automatische Zuweisen des Volume, Volume Ramp-up, Auto Balanced Modus, Dual Phones Modus, interaktive Hinweise bei Überlast, und eine automatische Skalierung der Level Meter bei niederohmiger Last.

21.2 Line Out TS 1/2

Der ADI-2 besitzt zwei unsymmetrische analoge Ausgänge, die Pegel bis zu +19 dBu liefern. Die kurzschlussfesten und niederohmigen Line-Ausgänge 1/2 sind in Form von 6,3 mm Mono-Klinkenbuchsen (TS) realisiert. Bei Nutzung eines Stereo-Klinkensteckers (TRS) wird dessen Ring-Kontakt auf Masse geschaltet.

Diese Ausgänge folgen allen Einstellungen des Referenz-Pegels, bleiben aber bei Auswahl von +24 dBu auf +19 dBu stehen. Für Details zu **Auto Ref Level** siehe nächstes Kapitel.

21.3 Line Out XLR 1/2

Der ADI-2 besitzt zwei symmetrische analoge Ausgänge, die Pegel bis zu +24 dBu liefern. Die kurzschlussfesten und niederohmigen Line-Ausgänge 1/2 finden sich in Form zweier XLR-Buchsen auf der Rückseite.

Die elektronische Ausgangsschaltung der XLR-Ausgänge arbeitet nicht servosymmetrisch! Bei Anschluss unsymmetrischer Geräte ist daher darauf zu achten, dass der negative Pin (3) frei bleibt. Eine Verbindung mit Masse kann zu erhöhtem Klirrfaktor führen!

Um den an den ADI-2 Pro angeschlossenen Geräten einen optimalen Pegel zu bieten, verfügt dieser intern über hochwertige elektronische Schalter, die eine perfekte Pegelanpassung an die vier meistgenutzten Studiopegel +4 dBu, +13 dBu, +19 dBu und +24 dBu realisieren.

Die analogen Ausgänge 1/2 (wie auch 3/4) besitzen eine Funktion zur automatischen Einstellung des Referenz-Pegels. **Auto Ref Lev**(el) maximiert den Rauschabstand bei Nutzung des Volume-Knopfs. Sie wechselt zum nächst höheren oder niedrigeren Referenz-Pegel, wenn der per Volume gewählte Wert mit solchen einen besseren Rauschabstand erzielen würde.

Beispiel: Ref Lev steht auf +24 dBu, Volume auf -21 dB. Der effektive Rauschabstand (SNR) am XLR-Ausgang beträgt nun 117 dB minus 21 dB = 96 dB (RMS unbewertet). Obwohl dabei Rauschen noch nicht hörbar wird, benötigt ein Ref Level von +4 dBu nur eine Volume-Einstellung von -1 dB. Der SNR beträgt dann 115 minus 1 = 114 dB. Solche Einstellungen nimmt normalerweise der Anwender manuell vor. Auto Ref Lev übernimmt diese Aufgabe, und arbeitet in beiden Richtungen, sowohl wenn Volume erhöht als auch wenn es verringert wird.

<u>Hinweise</u>: Diese Technik schaltet Bauteile im Signalweg um, genau wie bei der manuellen Auswahl des Ref Lev, und ist daher nicht vollständig frei von Klick-Geräuschen. Um Übersteuerung zu verhindern beeinflusst der aktuelle Gain des EQ die Umschaltschwelle.

21.4 PH Out 1/2

Die Kanäle 1/2 sind auch auf der Front per 6,3 mm Stereo-Klinkenbuchse (TRS) verfügbar.

Alle mit 1/2 beschrifteten Ausgänge teilen sich den gleichen Volume-Wert und den gleichen Hardware Referenz-Pegel, mit zwei kleinen Unterschieden: wie zuvor beschrieben ist der unsymmetrische TS-Ausgang auf +19 dBu begrenzt, und der frontseitige Ausgang PH 1/2 hat einen 3 dB höheren Ausgangspegel. Obwohl dieser auch auf die Einstellung +19 dBu limitiert ist, beträgt sein tatsächlicher Ausgangspegel +22 dBu.

Durch diese +3 dB werden aus +4 dBu am Kopfhörerausgang PH 1/2 +7 dBu, aus +19 dBu +22 dBu. Grund: der Ausgang PH 1/2 wird so identisch zum Ausgang PH 3/4 (Hi-Power Off = +7 dBu, Hi-Power On = +22 dBu). Identische Pegel beider Kopfhörerausgänge sind für den Balanced-Betrieb erforderlich, vereinfachen aber auch ansonsten Einstellung und Bedienung.

PH 3/4 ist der eigentliche Kopfhörerausgang des ADI-2 Pro. PH 1/2 ist ein Zusatz für weitere Anwendungen. Durch die Teilung von Pegel/Volume mit den hinteren Ausgängen ergeben sich Einschränkungen. Daher erscheint beim Einstecken in den Ausgang PH 1/2 ein Warnhinweis.

Soll explizit Kopfhörerausgang 1/2 zum Einsatz kommen ist zunächst der Modus Dual Phones zu aktivieren. Im Menü findet sich außerdem eine Option zur Abschaltung der hinteren Ausgänge wenn PH 1/2 genutzt wird. Default ist Mute On sobald ein Stecker eingesteckt wurde.

Diese Ausgänge stellen ideale Kopfhörerausgänge dar. Tatsächlich wie auch technisch gesehen sind sie aber auch ideale Line-Ausgänge.

Bei Verwendung als Line-Ausgang ist im Allgemeinen ein Adapter von Stereo-Klinke auf zwei Mono-Klinken oder Cinchstecker erforderlich.

Die Belegung folgt internationalem Standard, der linke Kanal liegt auf der Spitze des Klinkensteckers, der rechte Kanal auf dem Ring.

RME hat eine lange Tradition von Kopfhörerausgängen die auch perfekt als Line-Ausgänge arbeiten. Die Extreme Power Ausgänge des ADI-2 Pro führen dies fort und weiter, indem sie außergewöhnliche Leistung mit höchster Kompatibilität und Vielseitigkeit kombinieren. Beispielsweise werden die beiden unsymmetrischen Stereo Phones auf der Front zu hochqualitativen, symmetrischen Mono-TRS-Ausgängen, sobald der Modus Balanced Phones aktiv ist.

21.5 PH Out 3/4

Ein zweiter 2-Kanal DAC im ADI-2 Pro ermöglicht einen komplett unabhängigen Kopfhörerausgang PH 3/4. Kanäle 3/4 befinden sich auf der Front als 6,3 mm TRS (Stereo) Klinkenbuchse. PH 3/4 kann in jedem Modus jeden Eingang abhören, egal welcher Eingang gerade von den Ausgängen 1/2 genutzt wird. Mit aktivem SRC auf dem aktuellen Eingang der Kanäle 3/4 kann dieser sogar Clock-unabhängig von den Ausgängen 1/2 arbeiten.

Die Extreme Power Treiberstufe ist 100% identisch mit der von PH 1/2. Um die Nutzung des Haupt-Kopfhörerausgangs zu vereinfachen besitzt er zwei Ausgangpegel: Hi-Power off (+7 dBu), und Hi-Power on (+22 dBu). Wie oben erklärt entsprechen diese den Einstellungen +4 dBu und +19 dBu von PH 1/2. Ausgang PH 3/4 kann auch als unsymmetrischer Stereo Line-Ausgang dienen, siehe PH Out 1/2.

Das Menü enthält eine Option zur Abschaltung der hinteren Ausgänge wenn PH 3/4 genutzt wird. Default ist Mute On sobald ein Stecker eingesteckt wurde.

22. Digitale Anschlüsse

22.1 AES

Nach Anschluss des mitgelieferten Breakoutkabels an die 9-polige Sub-D Buchse auf der Rückseite steht je ein XLR AES/EBU Ein- und Ausgang bereit. Beide sind trafosymmetriert und galvanisch getrennt. Der Anschluss erfolgt über symmetrisches Kabel mit XLR-Steckverbindern.

Eingang

Der AES-Eingang ist aktiv, wenn sich das Gerät im Modus Auto befindet, und AES das einzige digitale Eingangssignal ist. Im Modus USB Multi-channel ist AES als Eingangskanäle 3/4 für eine USB-Aufnahme verfügbar. Im 2-Kanal Modus ist AES nur für die Ausgänge Phones Out 3/4 nach manueller Auswahl dieses Eingangs verfügbar. Kapitel 17 enthält Details und Block-diagramme für weitergehende Informationen.

Der SRC ermöglicht eine Entkopplung der Clock und Konvertierung der Samplefrequenz.

Ausgang

Wie im Blockdiagramm in Kapitel 17 zu sehen führen alle digitalen Ausgänge in den meisten Modi das gleiche Signal. Der ADI-2 Pro arbeitet dann wie ein Splitter/Verteiler. Das Eingangssignal wird gleichzeitig in mehrere digitale Formate gewandelt, und kann bis zu drei Mal genutzt werden (AES, SPDIF koaxial, SPDIF optisch oder ADAT).

Im Modus USB Multi-channel gibt der AES-Ausgang die Kanäle 5/6 aus, siehe Kapitel 17.4.

Die ausgangsseitige Kennung des ADI-2 Pro wurde entsprechend AES3-1992 Amendment 4 implementiert:

- 32 / 44.1 / 48 kHz, 64 / 88.2 / 96 kHz, 176.4 / 192 kHz je nach Samplefrequenz
- Audio use
- No Copyright, Copy permitted
- Format Professional
- Category General, Generation not indicated
- 2-Channel, No Emphasis
- Aux Bits Audio use, 24 Bit
- Origin: RME

Ältere Geräte mit AES/EBU (und SPDIF) sowie Aufnahmemedien können eine Emphasis-Kennung enthalten. Mit Emphasis versehenes Audiomaterial besitzt eine starke Höhenanhebung, und erfordert daher bei der Wiedergabe eine Höhenabsenkung. Bei der Nutzung des ADI-2 Pro als Audiointerface zur Aufnahme von SPDIF/AES in eine Datei geht die Emphasis-Kennung verloren. Siehe Kapitel 34.4.

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 auch an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitore mit digitalen Eingängen.

22.2 SPDIF

Eingang

Zwei SPDIF-Eingänge sind verfügbar, optisch über TOSLINK und koaxial über das mitgelieferte Breakoutkabel. Allerdings ist nur einer jeweils nutzbar. Die weiße Cinch-Kupplung ist der Eingang, die rote der Ausgang.

Der aktuell aktive SPDIF-Eingang lässt sich unter Setup – Options – SPDIF / Remap Keys – SPDIF In auswählen. In der Stellung Auto wird der Eingang mit gültigem Signal automatisch aktiviert.

Der optische Eingang versteht auch das ADAT-Format, mit bis zu 192 kHz. Es sind aber nur die Kanäle 1/2 des 8-kanaligen Formats verfügbar.

Mit einem Kabeladapter ist der Empfang von Signalen im Format AES/EBU auf dem koaxialen Eingang möglich. Dazu werden die Pins 2 und 3 einer XLR-Kupplung einzeln mit den beiden Anschlüssen eines Cinch-Steckers verbunden. Die abschirmende Masse des Kabels ist nur an Pin 1 der XLR-Kupplung anzuschließen.

Ausgang

Bei SPDIF stehen identische Signale am optischen und koaxialen Ausgang an. Daher lassen sich auch zwei Geräte gleichzeitig anschließen und der ADI-2 Pro als Verteiler nutzen (1 auf 2).

Unter *Setup – Options – SPDIF / Remap Keys – Optical Out* lässt sich das Ausgangsformat manuell von SPDIF auf ADAT ändern. Nur zwei Kanäle werden über ADAT gesendet, die gleichen die weiterhin am koaxialen Ausgang anstehen.

Die SPDIF-Ausgangskennung des ADI-2 Pro wurde entsprechend IEC60958 implementiert:

- 32 / 44.1 / 48 kHz, 88.2 / 96 kHz, 176.4 / 192 kHz je nach Samplefrequenz
- Audio use, Non-Audio
- No Copyright, Copy Permitted
- Format Consumer
- Category General, Generation not indicated
- 2-Channel, No Emphasis
- Aux Bits Audio use

Die Option *Digital Out Source - Main Out* (SETUP – Options – Device Mode / DSD) sendet das prozessierte Signal Main Out 1/2 auch an die digitalen Ausgänge AES, SPDIF und ADAT, z.B. zum Anschluss aktiver Monitor mit digitalen Eingängen.

Pinbelegung der 9-poligen D-Sub Buchse, Breakoutkabel SPDIF / AES

<u>Hinweis</u>: Das digitale Breakoutkabel ist identisch mit dem der DIGI96 Serie und anderer Karten der HDSP Serie.

Pin	Name	Pin	Name	Pin	Name
1	GND	4	AES Out +	7	SPDIF In -
2	SPDIF Out +	5	AES In +	8	AES Out -
3	SPDIF In +	6	SPDIF Out -	9	AES In -

22.3 ADAT

Der optische SPDIF-Eingang ist vollständig kompatibel zu allen optischen ADAT-Ausgängen. Der interne Empfänger erkennt das Format und wechselt automatisch zwischen SPDIF- und ADAT-Modus. RMEs unübertroffene Bitclock PLL verhindert selbst im extremen Varipitch-Betrieb Aussetzer und Knackser während der Aufnahme und Wiedergabe, und bietet blitzschnellen und jitterarmen, samplegenauen Lock auf das digitale Eingangssignal. Der Anschluss erfolgt über handelsübliches Optokabel (TOSLINK).

Um das Konzept des Gerätes nicht zu zerstören, und die Bedienung einfach zu halten, werden nur die Kanäle 1/2 von ADAT genutzt. Selbst im Modus USB Multi-channel nutzt ADAT nur die SPDIF-Eingangskanäle 3/4 – nicht mehr. Dennoch kommen alle acht ADAT-Kanäle in zwei Fällen zum Einsatz: im Betrieb mit SMUX (96 kHz) und SMUX4 (192 kHz), wo die Kanäle 1/2 aus den Informationen verteilt über vier und acht Kanälen besteht. Und im Modus Digital Through, in dem zwar nur die Kanäle 1/2 abhörbar sind, alle acht Kanäle aber vom Eingang zum ADAT- Ausgang durchgereicht werden (Konfiguration des Ausgangs siehe unten).

Der ADAT-Eingang unterstützt eine Signalisierung von Double Speed, 88,2 und 96 kHz. Im Modus Slave springt die Clock des ADI-2 Pro automatisch zu den passenden Double Speed Frequenzen. Diverse RME Interfaces unterstützen diese Art der Signalisierung.

Unter Setup – Options – SPDIF / Remap Keys – Optical Out ist eine manuelle Auswahl des Ausgangsformats zwischen SPDIF und ADAT möglich. Nur zwei Kanäle werden über ADAT gesendet, die gleichen die weiterhin am koaxialen Ausgang anstehen.

Bedienungsanleitung

ADI-2 Pro FS

Installation und Betrieb – Windows

23. Treiber-Installation

<u>Hinweis</u>: Seit FPGA Firmware 177 ist der ADI-2 Pro im CC-Modus Stereo vollständig kompatibel zu Windows 10 (1709 oder neuer). Eine Installation der RME-Treiber ist trotzdem empfehlenswert, denn sie ermöglichen ASIO (PCM, DSD DoP und DSD Native) und ergänzen 768 kHz WDM. Die Treiber sind auch für ein Firmware-Update und DIGICheck erforderlich. Außerdem arbeitet der Multi-channel Modus in Windows 10 unvollständig (getestet mit 1803).

RME verbessert alle Treiber fortwährend. Laden Sie sich bitte den aktuellsten Treiber von der RME Website herunter: <u>http://rme.to/usb</u>, driver_madiface_win_09680.zip oder neuer. Nach dem Herunterladen und Entpacken der ZIP-Datei startet die Installation durch das Starten der *rmeinstaller.exe*. Nach der Treiberinstallation verbinden Sie den ADI-2 Pro per USB-Kabel mit dem Computer. Windows erkennt den **ADI-2 Pro** und installiert die Treiber automatisch.

Nach einem Neustart erscheint in der Taskleiste das Symbol des Settingsdialogs. Windows versteckt dieses oft hinter dem Dreieck bzw. Aufwärtssymbol – ein Klick darauf erlaubt Zugriff und Konfiguration des Erscheinens.

Wie man den optimalen USB-Anschluss findet beschreibt Kapitel 34.17.

Treiber-Updates erfordern keine Entfernung des vorherigen Treibers. Der neue Treiber kann einfach über den vorherigen installiert werden.

Wird der ADI-2 Pro nicht automatisch gefunden liegt ein Fehler vor. Mögliche Ursachen sind:

- Der ADI-2 Pro ist nicht eingeschaltet
- Der USB-Port ist im System nicht aktiv (im Gerätemanager prüfen)
- Das USB-Kabel ist gar nicht oder nicht korrekt eingesteckt
- Nutzen Sie den State Overview Bildschirm des ADI-2 Pro zur Verifizierung der korrekten Funktion von USB (Kapitel 15.3)

De-installation der Treiber

Eine Deinstallation der Treiberdateien ist prinzipiell nicht notwendig. Dank vollständiger Plug & Play Unterstützung werden die Treiber nach Entfernen der Hardware nicht mehr geladen.

Leider gilt dies jedoch nicht für den Autostart-Eintrag des Settingsdialogs, sowie die Registrierung des ASIO-Treibers. Diese Einträge lassen sich aber über eine Software Deinstallationsanweisung aus der Registry entfernen. Sie befindet sich wie alle Deinstallationseinträge in der *Systemsteuerung, Programme und Funktionen.* Klicken Sie hier auf den Eintrag 'RME MADIface', dann *Deinstallieren.*

Für die Nutzung der Windows 10 Class Compliant Treiber sind die RME-Treiber vollständig zu entfernen (z.B. nach einen Firmware-Update). Achten Sie bei der Deinstallation über den Geräte-Manager darauf, im Dialog die Option *Die Treibersoftware für dieses Gerät löschen* zu aktivieren, damit die Treiber beim nächsten Neustart nicht automatisch wieder installiert werden.

Firmware Update

Siehe Kapitel 7. Unter Windows erfordert das Flash Update Tool einen installierten Treiber der RME MADIface Serie (siehe oben).

24. Konfiguration des ADI-2 Pro

24.1 Settingsdialog

Die Konfiguration des ADI-2 Pro erfolgt normalerweise direkt am Gerät. Bei Betrieb mit ASIO lassen sich Samplefrequenz und Puffergröße (Latenz) über einen eigenen Settingsdialog einstellen. Das Fenster 'Settings' öffnet sich nach Mausklick auf das Feuersymbol rechts unten in der Taskleiste.

Einstellungen im Settingsdialog werden in Echtzeit übernommen, sind ohne Klick auf OK oder das Schließen der Dialogbox aktiv.

Veränderungen an den Settings sollten aber möglichst nicht während laufender Wiedergabe oder Aufnahme erfolgen, da es sonst zu Störungen kommen kann. Zu beachten ist auch, dass manche Programme selbst im Modus 'Stop' das Aufnahme- und Wiedergabegerät geöffnet halten, und deshalb die neuen Einstellungen nicht immer sofort wirksam werden.

Buffer Size

Die Einstellung der *Buffer Size* (Puffergröße) bestimmt unter ASIO und WDM sowohl die Latenz zwischen eingehenden und ausgehenden Daten, als auch die Betriebssicherheit des Systems.

USB Diagnosis zeigt spezifische USB-Übertragungsfehler (CRC5, normal 0) und allgemeine Fehler. Erkennt das Gerät einen Aufnahme- oder Wiedergabefehler ist die Anzeige nicht mehr auf 0. Ein Audio-Reset erfolgt automatisch. Die Anzeige wird beim Start einer Aufnahme/Wiedergabe auf Null gesetzt.

Sample Rate

Setzt die aktuell verwendete Samplefrequenz. Bietet eine zentrale und komfortable Möglichkeit, die Samplefrequenz aller WDM-Devices auf den gewünschten Wert zu stellen, denn seit Vista ist dies nicht mehr über das Audioprogramm möglich. Ein ASIO-Programm kann die Samplefrequenz jedoch wie bisher selbst setzen.

MADIface Series Settings	?	×
ADI-2 Pro (1) About		
Buffer Size (Latency) 32768 Samples ▼ USB Diagnosis - 0 - 0 crc5 / 0.5 min		
Sample Rate 768000 Hz		
Current CC-Mode: Stereo Mode change: Disconnect ADI-2 Pro from USB. Go to SETUP - Options - Device Mode - CC Mode.		
	Abbrech	en

Bei laufender Wiedergabe/Aufnahme ist die Auswahl ausgegraut, eine Änderung nicht möglich.

Auf der Registerkarte **About** sind die aktuelle Treiberversion, die Firmwareversion und zwei weitere Optionen zu sehen:

Lock Registry

Default: Off. Verhindert Änderungen an den in der Registry gespeicherten Einstellungen des Settingsdialogs per Passwort. Alle Einstellungen sind weiter temporär änderbar. Da bei einem Neustart des Rechners immer die Einstellungen aus der Registry geladen werden kann so auf einfache Weise ein definierter Ausgangszustand des ADI-2 Pro erzeugt werden.

Enable MMCSS for ASIO

Aktiviert eine höhere Priorität des ASIO Treiber-Threads. Hinweis: Das Aktivieren dieser Option scheint derzeit nur bei höherer Last mit aktuellem Cubase/Nuendo sinnvoll zu sein. Bei anderen Programmen kann sich die Performance verschlechtern. Die Umschaltung wird nach einem Reset des ASIO-Treibers aktiv, daher lässt sich schnell und einfach testen, welche Einstellung besser funktioniert.

24.2 Clock Modi - Synchronisation

In der digitalen Welt sind Geräte immer Master (Taktgeber) oder Slave (Taktempfänger). Bei der Zusammenschaltung mehrerer Geräte muss es immer einen Master geben.

Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Ist beim ADI-2 Pro der Clock Mode 'Internal' aktiv, muss das extern angeschlossene Gerät Slave sein.

In der täglichen Studiopraxis ist die Definition einer Clock-Referenz unverzichtbar. RMEs exklusive **SyncCheck** Technologie dient der einfachen Prüfung und Anzeige der aktuellen Clock-Situation. Im State Overview zeigt die Spalte SYNC für alle digitalen Eingänge getrennt an, ob ein gültiges Signal anliegt (No Lock, Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). Siehe Kapitel 15.3.

Der SRC (Sample Rate Converter) kann als Clock-Entkoppler arbeiten, was mehrere Clock-Master in einem Verbund erlaubt. Nähere Informationen enthält Kapitel 8.6.

Da der ADI-2 Pro unter WDM die Samplefrequenz selbst vorgibt bzw. vorgeben muss, kann es bei externer Clock

-Sample Rate-			
	44100 Hz	$\overline{\mathbf{v}}$	Current 48000 Hz

zu dem im Bild dargestellten Fehler kommen. Ein AES, SPDIF oder ADAT-Signal mit 48 kHz dient als Sync-Referenz, aber Windows Audio wurde zuvor mit 44100 Hz gestartet. Die rote Färbung der Beschriftung Sample Rate macht deutlich, dass hier 48 kHz eingestellt werden sollte.

25. Betrieb und Bedienung

25.1 Wiedergabe

Zuerst ist der ADI-2 Pro als ausgebendes Gerät in der jeweiligen Software einzustellen. Übliche Bezeichnungen sind *Playback Device, Device, Audiogerät* etc., meist unter *Optionen, Vorgaben* oder *Preferences* zu finden.

Mehr oder größere Puffer in der Applikation (WDM) oder dem RME Settingsdialog (ASIO) ergeben eine höhere Störsicherheit, aber auch eine größere Verzögerung bis zur Ausgabe der Daten.

Bitte beachten Sie dass Windows WDM derzeit auf 384 kHz beschränkt ist. 768 kHz ist nur mit ASIO nutzbar.

<u>Hinweis</u>: Seit Vista ist es der Applikation unter WDM nicht mehr möglich die Samplefrequenz zu bestimmen. Der Treiber des ADI-2 Pro enthält daher eine Möglichkeit, die Samplefrequenz zentral für alle WDM-Devices im Settingsdialog einzustellen. Siehe Kapitel 24.1.

25.2 DVD Playback (AC-3/DTS)

AC-3 / DTS

Populäre DVD Software Player können ihren Audio Datenstrom über den ADI-2 Pro an jeden AC-3/DTS fähigen Receiver senden.

Die Samplefrequenz muss im ADI-2 Pro auf 48 kHz gestellt werden, da die Software sonst nur einen analogen 2-Kanal Downmix via SPDIF ausgibt.

In manchen Fällen muss das Wiedergabegerät des ADI-2 Pro als *Standard* in > *Systemsteuerung /Sound /Wiedergabe* < gesetzt sein, damit die Software es erkennt.

In den Audio-Eigenschaften der DVD-Software steht nun die Option 'SPDIF Out' oder ähnlich zur Verfügung. Wird diese angewählt, spielt die Software das undekodierte digitale Mehrkanalsignal über den AES- und SPDIF-Ausgang des ADI-2 Pro ab.

<u>Achtung</u>: Dieses 'SPDIF'-Signal klingt wie zerhacktes Rauschen bei maximalem Pegel. Daher mutet der ADI-2 Pro die analogen Ausgänge automatisch.

Multi-channel

PowerDVD und WinDVD können auch als Software-Decoder arbeiten, und den mehrkanaligen Datenstrom einer DVD direkt auf die analogen und digitalen Ausgänge des ADI-2 Pro ausgeben. Damit dies funktioniert, ist das Gerät über SETUP/Options/Device Mode in den CC-Mode Multi-channel zu setzen, und das WDM Wiedergabegerät 'Lautsprecher' des ADI-2 Pro unter *>Systemsteuerung/ Sound/ Wiedergabe < als Standard* auszuwählen. Außerdem ist unter *>Konfigurieren < das Lautsprechersetup von Stereo* auf *5.1 Surround* zu ändern.

In den Audio-Eigenschaften der abspielenden Software stehen nun mehrere Mehrkanal-Wiedergabemodi zur Verfügung. Werden diese angewählt, spielt die Software das dekodierte analoge Mehrkanalsignal über den ADI-2 Pro ab. Nicht bei jeder Software ist das Setzen des Lautsprechers im Sound-Fenster notwendig.

25.3 Multiclient-Betrieb

RME Audio Interfaces unterstützen Multiclient-Betrieb, also eine Nutzung mehrerer Programme gleichzeitig. Die Formate ASIO und WDM lassen sich sogar auf den gleichen Wiedergabekanälen gleichzeitig nutzen. Da WDM über eine Samplerate Conversion in Echtzeit verfügt, ASIO jedoch nicht, müssen alle beteiligten ASIO-Programme die gleiche Samplefrequenz benutzen.

Die Eingänge lassen sich bei WDM und ASIO gleichzeitig von beliebig vielen Programmen nutzen, da der Treiber die eingehenden Daten allen Programmen parallel zur Verfügung stellt.

Eine Besonderheit stellt RMEs Hi-End Tool *DIGICheck* dar. Es arbeitet als ASIO-Host, der mittels einer besonderen Technik auf in Benutzung befindliche Wiedergabekanäle zugreift. Daher kann DIGICheck sogar eine Analyse und Anzeige der Wiedergabedaten durchführen.

25.4 Multiinterface-Betrieb

RMEs Treiber unterstützen den Betrieb von bis zu drei Geräten der RME MADIface Serie. Dabei müssen alle Geräte synchron arbeiten, also per digitalem Eingangssignal mit synchronen Signalen versorgt werden. Der ADI-2 Pro kann so gemeinsam mit einem MADIface XT, MADIface USB, MADIface Pro, Fireface UFX+, oder einem weiteren ADI-2 Pro arbeiten. Unter ASIO präsentiert der Treiber alle Geräte als ein ASIO Device, mit allen verfügbaren Kanälen.

Wenn eines der Geräte im Clock Mode Master arbeitet, müssen die anderen im Modus Slave arbeiten, und vom Master-Gerät per ADAT, SPDIF oder AES synchronisiert werden. Im Settingsdialog sind die Clock-Modi der einzelnen Geräte korrekt zu konfigurieren.

25.5 ASIO

Nach dem Start der ASIO-Software ist in deren Audio-Einstellungen das Gerät oder der ASIO-Treiber **ASIO MADIface USB** auszuwählen.

Die Samplefrequenz wird von der ASIO-Software eingestellt. Die Puffergröße (Latenz) wird im RME Settingsdialog konfiguriert.

Die Anzahl verfügbarer Kanäle hängt vom aktuellen Class Compliant Modus ab: 2 Kanäle I/O mit Stereo, 6 In / 8 Out mit Multi-channel. Siehe Kapitel 14.1.3. Hinweis: das Ändern des CC-Modus erfordert eine temporäre Trennung des ADI-2 Pro vom Computer.

Der ASIO 2.2 Treiber unterstützt Samplefrequenzen bis zu 768 kHz im PCM-Format. DSD Aufnahme/Wiedergabe ist sowohl per DoP innerhalb von ASIO, als auch im ASIO native Übertragungsformat möglich. *ASIO Direct Monitoring* (ADM) wird nicht unterstützt.

26. DIGICheck Windows

DIGICheck ist ein weltweit einmaliges Utility für Tests, Messungen und die Analyse des digitalen Audio-Datenstroms. Die Software ist größtenteils selbsterklärend, enthält aber trotzdem eine ausführliche Online-Hilfe. DIGICheck 5.92 arbeitet als Multiclient ASIO Host, und kann daher parallel zu jeglicher Software sowohl die Eingangs- als auch die Ausgangsdaten (!) anzeigen. DIGICheck bietet derzeit folgende Funktionen:

- Level Meter. Hoch präzise, 24 Bit Auflösung, 2/8 Kanäle. Anwendungsbeispiele: Spitzen-Pegelmessung, RMS-Pegelmessung, Over-Erkennung, Messung des Korrelationsgrades (Phase), Messung von Dynamik/Rauschspannungsabständen, Darstellung der Differenz RMS/Peak (Lautheit), Langzeit Spitzenwerterfassung. Input Check. Oversampling Mode für Pegel höher als 0 dBFS. Ausrichtung Vertikal oder Horizontal. Slow RMS und RLB Weighting Filter. K-system kompatibel.
- **Spectral Analyser.** Weltweit einmalige 10-, 20- oder 30-Band Darstellung in analoger Bandpass-Filter Technologie. 192 kHz-fähig!
- Vector Audio Scope. Weltweit einmaliges Phasenmessgerät mit dem typischen Nachleuchten einer Oszilloskop-Röhre, integriertem Korrelationsgradmesser und Level Meter.
- Totalyser. Spectral Analyser und Vector Audio Scope in einem Fenster.
- **Surround Audio Scope.** Professionelles Surround Level Meter mit erweiterter Korrelations-Analyse, ITU Weighting und ITU Summenmeter.
- ITU1770/EBU R128 Meter. Für standardisierte Lautheits-Messungen.
- **Bit Statistics & Noise**. Zeigt die tatsächliche Bit Auflösung, sowie Fehler und DC. Integrierte Signal to Noise Messung in dB und dBA, sowie DC-Messung.
- Global Record. Langzeitaufnahme aller Kanäle mit minimaler Systemlast.
- Komplett Multiclient. Öffnen Sie so viele Messfenster jeglicher Messfunktion auf jeglichen Kanälen und Ein- und Ausgängen wie Sie wollen!

Zur Installation laden Sie die neueste Version von **www.rme-audio.de**, Sektion **Downloads** / **DIGICheck**. herunter, entpacken das zip-Archiv, und starten *setup.exe*. Folgen Sie den Anweisungen am Bildschirm.

ADI-2 Pro FS

Installation und Betrieb – Mac OS X

27. Allgemeines

Der ADI-2 Pro ist ein UAC 2.0 Class Compliant Device. Mac OS X unterstützt UAC vollständig, es ist keine Treiberinstallation erforderlich. Verbinden Sie den ADI-2 Pro per USB-Kabel mit dem Computer. Mac OS X erkennt die neue Hardware als **ADI-2 Pro (Seriennummer)**.

Die Anzahl verfügbarer Kanäle hängt vom aktuellen Class Compliant Modus ab: 2 Kanäle I/O mit Stereo, 6 In / 8 Out mit Multi-channel, siehe Kapitel 14.1.3.

<u>Hinweis</u>: Das Ändern des CC-Modus erfordert eine temporäre Trennung des ADI-2 Pro vom Computer.

Informationen zu einem Firmware Update enthält Kapitel 7.

27.1 Konfiguration des ADI-2 Pro

Die Konfiguration des ADI-2 Pro erfolgt direkt am Gerät. Da normalerweise Mac OS X die Samplerate einstellt empfiehlt es sich den ADI-2 Pro auf Clock Source Internal zu stellen.

Über Launchpad - Other -Audio MIDI Setup wird der ADI-2 Pro für systemweite Nutzung konfiguriert. Das Fenster Audio enthält ein Menü zur Einstellung der Samplefrequenz. Im Modus Stereo sind bis zu 768 kHz möalich. im Modus Multichannel bis zu 192 kHz. Die beiden Modi lassen sich nur am Gerät auswählen, und erfordern eine Entfernung der USB-Verbindung während der Umstellung.

Über **Configure Speakers** lassen sich Stereo- und Multichannel-Wiedergabe auf alle verfügbaren Kanäle legen.

			Audio Devices		
÷	Built-in Microphone 2 ins / 0 outs Built-in Output 0 ins / 2 outs	¥ K	ADI-2 Pro (55395162) Clock Source: Default		?
Ý	ADI-2 Pro (55395162) 6 ins / 8 outs	•)	Source: Default	it Integer	
			Channel Volume	Value dB	Mute
			▼Master Stream		
			Master		
			Analog 1		
			Analog 2		
			Phones 3		
			Phones 4		
			AES L		
			AES R		
			SPDIF L		
			SPDIF R		
+ -	* ~		C	onfigure Speake	ers

Programme, die keine Karten- und/oder Kanalauswahl unterstützen, verwenden immer den Eingang und Ausgang des unter **Systemeinstellungen - Ton** gewählten Geräts. Diese Einstellung ist auch im Audio MIDI Setup über das Zahnrad unten im Fenster möglich.

27.2 Clock Modi - Synchronisation

In der digitalen Welt sind Geräte immer Master (Taktgeber) oder Slave (Taktempfänger). Bei der Zusammenschaltung mehrerer Geräte muss es immer einen Master geben.

Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Ist beim ADI-2 Pro der Clock Mode 'Internal' aktiv, muss das extern angeschlossene Gerät Slave sein.

In der täglichen Studiopraxis ist die Definition einer Clock-Referenz unverzichtbar. RMEs exklusive **SyncCheck** Technologie dient der einfachen Prüfung und Anzeige der aktuellen Clock-Situation. Im State Overview zeigt die Spalte SYNC für alle digitalen Eingänge getrennt an, ob ein gültiges Signal anliegt (No Lock, Lock), oder ob ein gültiges *und* synchrones Signal anliegt (Sync). Siehe Kapitel 15.3.

Der SRC (Sample Rate Converter) kann als Clock-Entkoppler arbeiten, was mehrere Clock-Master in einem Verbund erlaubt. Nähere Informationen enthält Kapitel 8.6.

27.3 Multiinterface-Betrieb

OS X erlaubt die Verwendung von mehr als einem Audiogerät und deren gleichzeitige Nutzung in einem Programm. Dies geschieht über die Funktion **Aggregate Devices**, mit dem sich mehrere Geräte zu einem zusammenfassen lassen. Dabei müssen alle Geräte synchron arbeiten, also per digitalem Eingangssignal mit synchronen Signalen versorgt werden.

Wenn eines der Geräte im Clock Mode Master arbeitet, müssen die anderen im Modus Slave arbeiten, und vom Master-Gerät per ADAT, SPDIF oder AES synchronisiert werden. Im Settingsdialog sind die Clock-Modi der einzelnen Geräte korrekt zu konfigurieren.

28. DIGICheck Mac

DIGICheck ist ein weltweit einmaliges Utility für Tests, Messungen und Analyse des digitalen Audio-Datenstroms. Die Software ist größtenteils selbsterklärend, enthält aber trotzdem eine ausführliche Online-Hilfe. DIGICheck 0.73 arbeitet parallel zu jeglicher Software und kann derzeit alle Eingangsdaten anzeigen. DIGICheck bietet aktuell folgende Funktionen:

- Level Meter. Hoch präzise, 24 Bit Auflösung, 2/8 Kanäle. Anwendungsbeispiele: Spitzen-Pegelmessung, RMS-Pegelmessung, Over-Erkennung, Messung des Korrelationsgrades (Phase), Messung von Dynamik/Rauschspannungsabständen, Darstellung der Differenz RMS/Peak (Lautheit), Langzeit Spitzenwerterfassung. Input Check. Oversampling Mode für Pegel höher als 0 dBFS. Ausrichtung Vertikal oder Horizontal. Slow RMS und RLB Weighting Filter. K-system kompatibel.
- **Spectral Analyser.** Weltweit einmalige 10-, 20- oder 30-Band Darstellung in analoger Bandpass-Filter Technologie. 192 kHz-fähig!
- Vector Audio Scope. Weltweit einmaliges Phasenmessgerät mit dem typischen Nachleuchten einer Oszilloskop-Röhre, integriertem Korrelationsgradmesser und Level Meter.
- Totalyser. Spectral Analyser und Vector Audio Scope in einem Fenster.
- **Surround Audio Scope.** Professionelles Surround Level Meter mit erweiterter Korrelations-Analyse, ITU Weighting und ITU Summenmeter.
- ITU1770/EBU R128 Meter. Für standardisierte Lautheits-Messungen.
- **Bit Statistics & Noise**. Zeigt die tatsächliche Bit Auflösung, sowie Fehler und DC. Integrierte Signal to Noise Messung in dB und dBA, sowie DC-Messung.
- Komplett Multiclient. Öffnen Sie so viele Messfenster jeglicher Messfunktion auf jeglichen Kanälen wie Sie wollen!

Zur Installation laden Sie die neueste Version von **www.rme-audio.de**, Sektion **Downloads** / **DIGICheck**. herunter, entpacken das zip-Archiv, und starten *setup.exe*. Folgen Sie den Anweisungen am Bildschirm.

Bedienungsanleitung

ADI-2 Pro FS

▶ Installation und Betrieb – iOS

29. Allgemeines

Der ADI-2 Pro arbeitet im Modus **Class Compliant** (UAC 2.0), ein Standard der nativ von Betriebssystemen wie iOS, Mac OS X, Linux und Windows 10 (seit 1709) unterstützt wird. Es sind dann keine weiteren Treiber erforderlich, ein Gerät wird direkt erkannt.

Der ADI-2 Pro versieht iOS-Geräte mit den ihnen fehlenden professionellen analogen I/Os. Professionelle symmetrische und unsymmetrische Line Ein- und Ausgänge, zwei Extreme Power Kopfhörerausgänge, die mit allen hoch- und niederohmigen Kopfhörern perfekt zusammenarbeiten, umfassende Verstärkungs- und Pegeleinstellungen, AES, SPDIF und ADAT I/O Anschlüsse, PCM Aufnahme / Wiedergabe mit bis zu 768 kHz, und DSD Aufnahme / Wiedergabe mit bis zu 11,2 MHz (DSD256).

Der ADI-2 Pro liefert keine Versorgungsspannung an iPad/iPhone. Der neuere Lightning zu USB 3 Camera Adapter von Apple enthält eine Lightning-Buchse zum Anschluss des Standard Apple Netzteils, und ermöglicht so das Laden des i-Device während es im Modus Class Compliant mit dem ADI-2 Pro arbeitet.

30. Systemvoraussetzungen

- Beliebiges Apple iPad mit mindestens iOS 5, oder iPhone mit mindestens iOS 7
- Apple iPad Camera Connection Kit oder Lightning zu USB Adapter

31. Setup

Verbinden Sie das USB Kabel mit dem Camera Connection Kit/Lightning Adapter. Nun das i-Device starten und Kit/Adapter in die Buchse am i-Device einstecken. Funktioniert alles wie erwartet wird der ADI-2 Pro nun für jegliches Audio I/O verwendet. Eine Audio-Wiedergabe von iTunes erfolgt automatisch über den ADI-2 Pro, auf den analogen Ausgängen 1/2 und 3/4.

Hinweis: Die Lautstärkeeinstellung des i-Device ist während des USB-Betriebs außer Funktion.

32. Unterstützte Eingänge und Ausgänge

Am iPad funktioniert bei Mono-Apps Eingang 1, bei Stereo-Apps Eingang 1/2 (also Analog In, sowohl Dual-Mono als auch Stereo), und bis zu 6 Eingänge bei Apps wie *MultiTrack DAW* und *Music Studio. Garage Band* unterstützt zwar alle 6 Eingänge, aber nur zwei gleichzeitig. *Auria* und Cubasis können alle 6 Eingänge gleichzeitig aufnehmen.

Wiedergabe nutzt die analogen Ausgänge 1 und 2, oder auch mehr, wenn die jeweilige App das unterstützt, so wie Auria und Cubasis, die alle 8 Kanäle nutzen können wenn sich der ADI-2 Pro im Modus Multi-channel befindet.

Im Class Compliant Modus ist der Default Clock Modus *Internal*, und iOS setzt typisch 96 kHz. Jede App kann die Samplefrequenz auf einen beliebigen Wert ändern/setzen, aber nicht alle Apps bieten eine Auswahl an. Das Setzen des ADI-2 Pro (und mit ihm das i-Device) in den Modus Slave, durch Auswahl von AES oder SPDIF als externer Clock-Quelle synchronisiert den ADI-2 Pro zu dieser. Bei einer falschen Samplefrequenz kommt es zu schweren Audiostörungen (der Gebrauch des SRC hilft in bestimmten Fällen). Ohne externe Clock wechselt der ADI-2 Pro zu seiner internen, wobei iOS oder die in Gebrauch befindliche App die aktuelle Samplefrequenz bestimmt.

Bedienungsanleitung

ADI-2 Pro FS

Technische Referenz

33. Technische Daten

33.1 Analoge Eingänge

XLR

- Eingang: XLR, servosymmetrisch
- Eingangsimpedanz symmetrisch: 18 kOhm, unsymmetrisch: 9 kOhm
- Eingangsempfindlichkeit schaltbar +24 dBu, +19 dBu, +13 dBu, +4 dBu @ 0 dBFS
- Digital Trim Gain Bereich: 0 dB up to +6 dB
- Rauschabstand (SNR) @ +13/19/24 dBu: 120,x dB RMS unbewertet, 124,x dBA
- Rauschabstand (SNR) @ +4 dBu: 119 dB RMS unbewertet, 123 dBA
- Frequenzgang @ 44,1 kHz, -0,1 dB: 5 Hz 20.5 kHz
- Frequenzgang @ 96 kHz, -0,5 dB: 3 Hz 45,5 kHz
- Frequenzgang @ 192 kHz, -1 dB: 2 Hz 92,7 kHz
- Frequenzgang @ 384 kHz, -1 dB: < 1 Hz 124 kHz
- Frequenzgang @ 768 kHz, -3 dB: < 1 Hz 180 kHz
- THD @ -1 dBFS: -113 dB, 0,00022 %
- THD+N @ -1 dBFS: -110,6 dB, 0,00029 %
- THD @ -10 dBFS: -120 dB, 0,0001 %
- Übersprechdämpfung: > 110 dB

TRS

Wie XLR, aber:

• Eingang: 6,3 mm Stereoklinke, servosymmetrisch

33.2 Analoge Ausgänge

1/2 XLR

- Ausgangspegel schaltbar +24 dBu, +19 dBu, +13 dBu, +4 dBu @ 0 dBFS
- Rauschabstand (SNR) @ +13/19/24 dBu: 117 dB RMS unbewertet, 120 dBA
- Rauschabstand (SNR) @ +4 dBu: 115 dB RMS unbewertet, 118 dBA
- Frequenzgang @ 44.1 kHz, -0,1 dB: 0 Hz 20,2 kHz
- Frequenzgang @ 96 kHz, -0,5 dB: 0 Hz 44,9 kHz
- Frequenzgang @ 192 kHz, -1 dB: 0 Hz 88 kHz
- Frequenzgang @ 384 kHz, -1 dB: 0 Hz 115 kHz
- Frequenzgang @ 768 kHz, -3 dB: 0 Hz 109 kHz
- THD @ -1 dBFS: -112 dB, 0,00025 %
- THD+N @ -1 dBFS: -110 dB, 0,00039 %
- THD @ -3 dBFS: -116 dB, 0,00016 %
- Übersprechdämpfung: > 110 dB
- Ausgangsimpedanz: 200 Ohm symmetrisch, 100 Ohm unsymmetrisch

1/2 TS (rear)

Wie 1/2 XLR, aber:

- Ausgang: 6,3 mm Monoklinke, unsymmetrisch
- Maximaler Ausgangspegel: +19 dBu
- Rauschabstand (SNR) @ +19 dBu: 117 dB RMS unbewertet, 120 dBA
- Rauschabstand (SNR) @ +13 dBu: 116 dB RMS unbewertet, 119 dBA
- Rauschabstand (SNR) @ +4 dBu: 113 dB RMS unbewertet, 117 dBA
- Ausgangsimpedanz: 100 Ohm

Phones 1/2

Wie 1/2 TS, aber:

- Ausgang: 6,3 mm Stereoklinke, unsymmetrisch
- Ausgangsimpedanz: 0,1 Ohm
- Rauschabstand (SNR) @ +22 dBu: 117 dB RMS unbewertet, 120 dBA
- Rauschabstand (SNR) @ +7 dBu: 114 dB RMS unbewertet, 118 dBA
- Ausgangspegel bei 0 dBFS, Ref Level +19 dBu, Last 100 Ohm oder höher: +22 dBu (10 V)
- Ausgangspegel bei 0 dBFS, Ref Level +4 dBu, Last 8 Ohm oder höher: +7 dBu (1,73 V)
- THD @ +18 dBu, 32 Ohm Last, 1,2 Watt: -110 dB, 0,0003 %
- THD+N @ + 18 dBu, 32 Ohm Last: -107 dB, 0,00045 %
- THD @ +14 dBu, 16 Ohm Last, 0,94 Watt: -110 dB, 0,0003 %
- Maximale Ausgangsleistung @ 0,001% THD: 1,5 W pro Kanal

Siehe Kapitel 34.14 mit detaillierten Diagrammen zu Ausgangspegel und Ausgangsleistung.

Phones 3/4

Wie Phones 1/2, aber:

• Ausgangspegel bei 0 dBFS: Hi-Power off +7 dBu, Hi-Power On +22 dBu

Balanced Phones mode

Wie zuvor, aber:

- Ausgangspegel bei 0 dBFS: Hi-Power off +13 dBu (3,46 V), Hi-Power On +28 dBu (19,5 V)
- Ausgangsimpedanz: 0,2 Ohm
- Rauschabstand (SNR) @ +28 dBu: 120 dB RMS unbewertet, 123 dBA
- Rauschabstand (SNR) @ +13 dBu: 118 dB RMS unbewertet, 121 dBA
- Ausgangspegel bei 0 dBFS, Hi-Power On, Last 150 Ohm oder höher: +28 dBu (19,5 V)
- Ausgangspegel bei 0 dBFS, Hi-Power Off, Last 8 Ohm oder höher: +13 dBu (3,46 V)
- Maximale Ausgangsleistung @ 0.001% THD: 2,9 W pro Kanal

33.3 Digitale Eingänge

Allgemein

- Lock Range: 28 kHz 200 kHz
- Jitterunterdrückung: > 50 dB (2,4 kHz)
- Akzeptiert Consumer und Professional Format

AES/EBU

- 1 x XLR, trafosymmetriert, galvanisch getrennt, nach AES3-1992
- Eingangsempfindlichkeit 1,0 Vss

SPDIF coaxial

- 1 x Cinch, nach IEC 60958
- hochempfindliche Eingangsstufe (< 0,3 Vss)
- AES/EBU kompatibel (AES3-1992)

SPDIF optical

- 1 x optisch, nach IEC 60958
- ADAT kompatibel

33.4 Digitale Ausgänge

AES/EBU

- 1 x XLR, trafosymmetriert, galvanisch getrennt, nach AES3-1992
- Ausgangsspannung 2,7 Vss
- Format Professional nach AES3-1992 Amendment 4
- Single Wire Mode, Samplefrequenz 44 kHz bis 200 kHz

SPDIF coaxial

- 1 x Cinch, nach IEC 60958
- Ausgangsspannung 0,75 Vpp
- Format Consumer (SPDIF) nach IEC 60958
- Single Wire Mode, Samplefrequenz 44 kHz bis 200 kHz

SPDIF optical

- 1 x optisch nach IEC 60958
- Format Consumer (SPDIF) nach IEC 60958
- Samplefrequenz 44 kHz bis 200 kHz

33.5 Digitaler Teil

- Clocks: Intern, AES In, SPDIF In, ADAT In
- Jitterunterdrückung bei externer Clock: > 50 dB (2,4 kHz)
- Praktisch kein effektiver Jittereinfluss der Clock auf AD- und DA-Wandlung
- PLL arbeitet selbst mit mehr als 100 ns Jitter ohne Aussetzer
- Zusätzliche digitale Bitclock-PLL für störungsfreies Varipitch im ADAT-Betrieb
- Unterstützte Samplefrequenzen für externe Clocks: 32 kHz bis zu 200 kHz
- Interne Clocks: 44.1 kHz bis zu 768 kHz

33.6 Allgemeines

- Mitgeliefertes Netzteil: externes Schaltnetzteil, 100 240 V AC, 12 V DC, 2 A, 24 Watt
- Leistungsaufnahme im Standby: 50 mW
- Leistungsaufnahme im Leerlauf: 10 Watt, Max. Leistungsaufnahme: 22 Watt
- Stromaufnahme im Leerlauf bei 12 V: 850 mA (10 Watt)
- Abmessungen (BxHxT): 215 x 44 x 130 mm
- Gewicht: 1.0 kg
- Temperaturbereich: +5° bis zu +50° Celsius
- Relative Luftfeuchtigkeit: < 75%, nicht kondensierend

33.7 Steckerbelegungen

Pinbelegung der 9-poligen D-Sub Buchse, Breakoutkabel SPDIF / AES

<u>Hinweis</u>: Das digitale Breakoutkabel ist identisch mit dem der DIGI96 Serie und anderer Karten der HDSP Serie.

Pin	Name	Pin	Name	Pin	Name
1	GND	4	AES Out +	7	SPDIF In -
2	SPDIF Out +	5	AES In +	8	AES Out -
3	SPDIF In +	6	SPDIF Out -	9	AES In -

TS / Mono-Klinkenbuchse Analog Out 1/2

Die 6,3 mm Klinkenbuchsen auf der Rückseite sind entsprechend internationalem Standard belegt: Spitze = + (hot), Ring = Masse (GND), Schaft = Masse (GND).

XLR-Buchsen

Die XLR-Buchsen der analogen Eingänge und Ausgänge sind entsprechend internationalem Standard belegt: 1 = GND (Abschirmung), 2 = + (hot), 3 = - (cold).

- Die elektronische Ausgangsschaltung der XLR-Ausgänge arbeitet nicht servosymmetrisch!
- Bei Anschluss unsymmetrischer Geräte ist daher darauf zu achten, dass der negative Pin
- (3) frei bleibt. Eine Verbindung mit Masse kann zu erhöhtem Klirrfaktor führen!

TRS Kopfhörerbuchsen

Die analogen Ausgänge speisen zwei Kopfhörerausgänge über zwei unabhängige Treiberstufen.

Bei Verwendung als Line-Ausgang ist im Allgemeinen ein Adapter von Stereo-Klinke auf zwei Mono-Klinken oder Cinchstecker erforderlich.

Die Belegung folgt internationalem Standard, der linke Kanal liegt auf der Spitze des Klinkensteckers, der rechte Kanal auf dem Ring.

Im Modus Balanced Phones wechseln die TRS-Ausgänge vom unsymmetrischen Stereo- zum symmetrischen Mono-Betrieb. Ein Adapterkabel wie das rechts gezeigte gibt Balanced Kopfhörern mit 4-poligem XLR-Stecker einen Anschluss an die Ausgänge des ADI-2 Pro.

Für Mini-XLRs ist das Pinout (Signal zu Pin-Nummer) identisch.

34. Technischer Hintergrund

34.1 Lock und SyncCheck

In der analogen Technik kann man beliebige Geräte beliebig miteinander verschalten, eine Synchronisation ist nicht erforderlich. Digital Audio jedoch ist einem Grundtakt, der Samplefrequenz, unterworfen. Das Signal kann nur korrekt weiterverarbeitet oder transportiert werden, wenn alle beteiligten Geräte dem gleichen Takt folgen. Ansonsten kommt es zu Fehlabtastungen des digitalen Signales. Verzerrungen, Knackgeräusche und Aussetzer sind die Folge.

Innerhalb eines digitalen Verbundes darf es nur einen Master geben! Wenn der ADI-2 Pro seine interne Clock nutzt müssen sich alle anderen Geräte zu dieser synchronisieren.

Digitale Signale bestehen aus einem Carrier (Träger) und den darin enthaltenen Nutzdaten (z.B. Digital Audio). Wenn ein digitales Signal an einen Eingang angelegt wird, muss sich der Empfänger (Receiver) auf den Takt des Carriers synchronisieren, um die Nutzdaten später störfrei auslesen zu können. Dazu besitzt der Empfänger eine PLL (Phase Locked Loop). Sobald sich der Empfänger auf die exakte Frequenz des hereinkommenden Carriers eingestellt hat ist er 'locked' (verriegelt). Dieser **Lock**-Zustand bleibt auch bei kleineren Schwankungen der Frequenz erhalten, da die PLL als Regelschleife die Frequenz am Empfänger nachführt.

Wird an den ADI-2 Pro ein SPDIF-Signal angelegt, zeigt der State Overview **LOCK**, also ein gültiges, einwandfreies Eingangssignal. Leider heißt Lock noch lange nicht, dass das empfangene Signal in korrekter Beziehung zur die Nutzdaten auslesenden Clock steht. Beide Samplefrequenzen müssen vollständig identisch sein, nicht nur in ihrer Frequenz, sondern auch in ihrer Phasenbeziehung. Dieser Status wird **Sync** genannt, und ist auch im State Overview zu sehen wenn gegeben.

Beispiel: Der ADI-2 Pro ist auf interne Clock mit 44,1 kHz eingestellt, und ein CD-Player an seinen Eingang angeschlossen. Der State Overview zeigt das Eingangssignal mit LOCK. Die Samplefrequenz des CD-Player wird ebenfalls intern erzeugt, und ist daher minimal höher oder niedriger als die des ADI-2 Pro. Ergebnis: Beim Auslesen der Nutzdaten kommt es regelmäßig zu Lesefehlern, die sich als Knackser und Aussetzer bemerkbar machen.

Um solche Probleme anzuzeigen enthält der ADI-2 Pro **SyncCheck**. Es prüft die verwendeten Clocks auf *Synchronität*. Sind diese nicht zueinander synchron (also absolut identisch) zeigt der Status Overview **LOCK**. Sind sie vollständig synchron erscheint **sync**.

In obigem Beispiel kann der CD-Player nicht im Modus Slave arbeiten, er wird immer seine interne Clock nutzen (Master). Dafür gibt es zwei Lösungen:

- Das Setzen der der Clock Source des ADI-2 Pro auf SPDIF. Der ADI-2 Pro folgt nun exakt der externen Clock des Eingangssignals, der State Overview wird dem SPDIF-Eingang ein stabiles sync attestieren.
- Das Aufschalten des SRC (Sample Rate Converters) auf den SPDIF In. Der SRC entkoppelt die Clocks, so dass der ADI-2 Pro weiter seine interne nutzen kann. In diesem Fall wird State Overview allerdings trotzdem LOCK beim SPDIF-Eingang anzeigen, da die beiden Frequenzen keine feste Phasenbeziehung haben.

In der Praxis erlaubt SyncCheck einen sehr schnellen Überblick über die korrekte Konfiguration aller digitalen Geräte. Damit wird eines der schwierigsten und fehlerträchtigsten Themen der digitalen Studiowelt endlich leicht beherrschbar.

34.2 Latency und Monitoring

Preamp Mode

Im Modus Preamp wird das analoge Signal digital konvertiert, vom DSP prozessiert, und wieder zu analog konvertiert. ADC und DAC weisen eine spezifische Verzögerung auf, verursacht von ihren Oversampling- und Antialias-Filtern. Diese Verzögerung wurde in den letzten Jahren stark verringert, und ist nun so gering, dass sie im Normalfall nicht mehr hörbar ist. Die Werte der AD- und DA-Wandlung stehen in der Tabelle weiter unten. Die Gesamt-Latenz ist wegen des Datenaustauschs von FPGA und DSP circa 11 Samples höher (22 Samples bei Quad Speed). Bei 44,1 kHz ergeben sich 23 Samples Verzögerung, entsprechend 0,5 ms. Bei 192 kHz beträgt die gesamte Verzögerung 36 Samples oder 0,2 ms! Das ist nicht weit weg von einem simplen Kabel.

Low Latency

Der ADI-2 Pro nutzt die neuesten Top AD- und DA-Wandler mit speziellen Low Latency Filtern, die überragenden Rauschabstand und niedrigste Verzerrung in Kombination mit superschneller Wandlung bieten. Eine Verzögerung um nur 5 Samples war vor einigen Jahren noch nicht erhältlich. Die genauen Verzögerungswerte durch die AD- und DA-Wandlung der ADI-2 Pro Wandlerchips, mit Short Delay Filtern aktiv, sind:

Samplefrequenz kHz	44,1	48	96	192
AD (5 x 1/fs) ms	0,11	0,10	0,06	0,026
DA Sharp (6,25 x 1/fs) ms	0,14	0,13		
DA Sharp (5,63 x 1/fs) ms			0,06	0,029
DA Slow (5,3 x 1/fs) ms	0,12	0,11		
DA Slow (4,68 x 1/fs) ms			0,05	0,024

Diese Werte repräsentieren einen wichtigen Schritt zur weiteren Reduzierung der Latenz im rechnergestützten Studio. Die zusätzliche Latenz - zumindest der AD- und DA-Wandlung - kann man hier schlicht ignorieren.

USB Recording und Playback

Der Modus Class Compliant ist grundsätzlich nicht anders als andere Formate. Der Transfer von Daten in/aus dem Computer geschieht mittels Puffern. Die Größe dieser Puffer bestimmt die Latenz oder Verzögerung auf dem Weg hinein wie hinaus. Die Gesamtverzögerung vom analogen Eingang durch den Computer und die Computersoftware (DAW) wird *Roundtrip Latency*, RTL, genannt. Auf typischen Computern ist eine RTL von 5 bis 10 ms zu erwarten.

Unter Mac OS X arbeitet Class Compliant identisch zum Standard Audio. Die Latenzen sind daher auch identisch, und werden – wie üblich – innerhalb der DAW-Software durch Wahl der gewünschten Puffergröße eingestellt.

Unter iOS ist Class Compliant die einzige Möglichkeit Audio zu transferieren, und liefert üblicherweise eine ähnliche Performance mit verschiedenen Interfaces.

Unter Windows nutzt der ADI-2 Pro den Treiber der MADIface Serie, um ihn genau wie jedes andere RME-Audiointerface nutzen zu können, mit der gleichen spektakulären Performance, obwohl er ein Class Compliant Device ist. Sowohl WDM als auch ASIO sind verfügbar. Die Latenz unter ASIO hängt hauptsächlich von der im Settingsdialog eingestellten Buffer Size ab.

Typische RTL-Werte bei 44,1 kHz Samplefrequenz unter Windows ASIO:

Puffergröße	RTL
128 Samples	7,3 ms
64 Samples	4,4 ms
32 Samples	2,9 ms

34.3 Balanced Phones Mode

Kopfhörer teilen sich üblicherweise eine Leitung zwischen linkem und rechtem Kanal: die gemeinsame Masse - ein unsymmetrischer Aufbau. Eine andere Art einer leistungsfähigen Ausgangsstufe nutzt ein symmetrisches Design. Beide Kabel eines Lautsprechers sind 'Phase', es gibt keine Masseverbindung. Diese Technik wird meist im Auto verwendet, da die Betriebsspannung auf 12 Volt begrenzt ist, und symmetrischer Betrieb, hier Brückenschaltung genannt, doppelte Ausgangspannung und vierfache Leistung an den Lautsprecher schickt.

Im symmetrischen Betrieb sind zwei identische Verstärker an jeweils eine Seite des Kopfhörers angeschlossen, und das Eingangssignal einer der Verstärker ist invertiert (180°). Sendet ein Verstärker eine positive Spannung aus, sendet der andere dieselbe als negative Spannung. Daher ist die vom Lautsprecher gesehene doppelt so hoch.

Trotz der von Kopfhörern benötigten, vergleichsweise kleinen Leistung, hat der Modus Balanced Phones einige interessante Aspekte:

- Die Ausgangsspannung wird verdoppelt. Beim ADI-2 Pro würde +22 dBu zu +28 dBu (6 dB Verstärkung). Nun hat kaum jemand einen Kopfhörer, der solch einen Pegel erfordert - erschreckende 19,5 Volt Ausgangsspannung. Wird der Hörer aber mit gleicher Lautstärke und effektivem Pegel wie zuvor betrieben, arbeiten die Treiberstufen mit 6 dB niedrigerem Pegel. Das kann sich positiv auf den Klirrfaktor und die Linearität auswirken.
- Die Ausgangsleistung wird vervierfacht. Eine für 1 Watt entwickelte Treiberstufe liefert 4 Watt, wenn eine gleiche zweite Stufe mit invertiertem Signal zum Einsatz kommt. Das ist eine signifikante Steigerung, die es erlaubt Ausgangsleistungen zu erreichen die selbst Bassheads fürchten, oder den Einsatz kleinerer Ausgangsstufen als üblich ermöglicht.
- Vollständig Masse-freier Betrieb verhindert EMI, sowie Probleme mit schwimmendem Bezugspotential in bestimmten (seltenen) Fällen.

Ein oft erwähnter Aspekt ist fragwürdig: ohne gemeinsame Leitung wäre die Trennung zwischen links und rechts optimiert. Das ist in der Theorie korrekt, hat aber keine Auswirkung in der hörbaren Realität, außer die Kopfhörer sind mit Kabeln versehen die man als defekt bezeichnen müsste.

Das untere Blockdiagramm zeigt den üblichen Weg, normale Kopfhörerausgangsstufen in den Balanced Modus zu schalten. Wie erwähnt sind zwei Stereo-Ausgänge notwendig, und jeweils eine Seite muss ein invertiertes Signal erhalten.

Standard Balanced Phones Design

Dieses Design, so verbreitet es auch ist, weist mehrere Nachteile auf:

- Eine analoge Invertierungsstufe muss in den analogen Signalweg
- Die Gleichtaktsituation des Signals am Kopfhörer wird durch den Unterschied von + und Phase beeinträchtigt - ausgelöst durch den analogen Inverter
- Mehrere Relais und eine aufwändige Verkabelung mit vor- und zurückführenden Drähten vom/zum PCB sind typisch für ein solches Design

Der ADI-2 Pro verdient eine andere, bessere Methode um Balanced zu arbeiten. Das Bild unten zeigt RMEs exklusives Design wie es im ADI-2 Pro implementiert ist.

ADI-2 Pro Advanced Balanced Phones Design

Der ADI-2 Pro besitzt zwei DACs und einen leistungsfähigen DSP. Diese Zutaten erlauben eine stark verbesserte Version mit mehreren Vorteilen:

- Der gesamte Signalweg vom DAC zu den Kopfhörern bleibt komplett unverändert. Nicht ein einziges Relais oder eine veränderte Verkabelung ist innerhalb des ADI-2 Pro notwendig.
- Der gesamte Signalweg vom DAC bis zu den Kopfhörern ist symmetrisch (!)
- Die Signal-Invertierung geschieht vollständig transparent und verlustfrei auf digitaler Ebene
- Wie von der Mono-Summierung bei ADCs und DACs bekannt arbeiten die beiden Kanäle jedes DAC nun auf diese Weise. Der Rauschabstand steigt um 3 dB.
- Tatsächlich ist die gesamte analoge Ausgangsschaltung Teil dieser Mono-Summierung. Das Rauschen des Gain Amps und der Treiberstufen wird auf gleiche Weise reduziert.
- Das Gleiche gilt f
 ür Klirr, der nicht nur durch die kleineren Ausgangspegel pro Amp, sondern auch durch die vom Kopfh
 örersystem realisierte Gleichtaktunterdr
 ückung verringert wird. Zus
 ätzlich werden kleinere Abweichungen der Hardware im DA-Signalweg durch Mittelung reduziert.

Der Advanced Balanced Modus des ADI-2 Pro ist so einzigartig wie brillant. Balanced Kopfhörer machten noch nie so viel Sinn wie mit dieser Umsetzung!

Im Advanced Balanced Modus steigt der maximale Ausgangspegel des ADI-2 Pro auf +13 dBu für Hi-Power Off und +28 dBu für Hi-Power On. Der Rauschabstand erhöht sich von 117 dB / 120 dBA auf 120 dB / 123 dBA. In anderen Worten: während der Ausgangspegel um 6 dB steigt, erhöht sich das Rauschen nur um 3 dB.

Während der höhere Ausgangspegel für einige ältere und exotische Kopfhörer nützlich sein mag, macht eine 4-fach höhere Ausgangsleistung (um 5 Watt, pro Kanal) keinen Sinn. Glücklicherweise verhindert die Strombegrenzungsüberwachung des ADI-2 Pro einen Anstieg der Ausgangsleistung auf mehr als 3 Watt, und auf unter 2 Watt bei Impedanzen unterhalb 24 Ohm. Kapitel 34.14 zeigt die verfügbare Ausgangsleistung an den Kopfhörerausgängen.

Der Advanced Balanced Modus hat konzeptionell nur eine Einschränkung: er funktioniert im Modus DSD, aber nicht DSD Direct, weil PH 1/2 wegen der fehlenden Lautstärkeeinstellung dann abgeschaltet ist.

34.4 Emphasis

In der Anfangszeit von digitalem Audio, mit AD- and DA-Konvertern von nur 14 Bit Auflösung, kam eine aus der Rundfunktechnik bekannte Methode zum Einsatz: Pre- und De-emphasis. Dabei erfolgt vor der Konvertierung eine Höhenanhebung im Audiosignal. Bei der Wiedergabe sorgt ein Höhenfilter für eine gegensätzliche Absenkung. Insgesamt hoffte man auf diese Weise das durch AD- und DA-Wandlung verursachte Rauschen und Verzerrungen zu verringern.

Einige ältere CDs wurden mit Emphasis aufgenommen, und tatsächlich ist Emphasis Teil des Red Book Standards. Solche Aufnahmen erfordern ein Filter auf der Wiedergabeseite, sonst klingen sie zu brillant. Die Wiedergabe ältere Aufnahmen von Band kann ebenfalls Deemphasis erfordern, und selbst einer der ersten DAT-Rekorder nutzte noch Emphasis dauerhaft.

Glücklicherweise beinhalten Digital zu Analog Wandlerchips De-emphasis. Der ADI-2 Pro aktiviert die De-emphasis des DAC automatisch wenn die aktuelle Quelle AES oder SPDIF ist, und die Emphasis-Kennung im ankommenden Channel Status gesetzt ist. Die State Overview zeigt diesen Zustand mit einer roten Warnung, WARNING SPDIF EMPHASIS, deutlich an.

Warum eine Warnung? Wenn der ADI-2 Pro als Audiointerface zur Aufnahme des SPDIF-Signals in eine Datei genutzt wird, geht die Emphasis-Kennung verloren. Ebenso existiert kein Mechanismus, um bei einer Wiedergabe der aufgenommenen Datei das Emphasis-Filter des ADI-2 Pro DAC zu steuern. Daher ermöglicht die Option *De-emphasis On* im I/O Menü des Kanals für solche Fälle auch eine manuelle Auswahl.

Eine Pre- und De-emphasis lässt sich auch außerhalb des DAC erzeugen, mit nur einem Band des Parametric EQ. Emphasis basiert auf einem RC-Filter erster Ordnung, mit Zeitkonstanten von 50 μ s und 15 μ s. Der Frequenzgang entspricht einer Höhenanhebung mit geringer Güte und +3 dB bei 3183 Hz. Der höchste Punkt des Shelf-Filters liegt bei 10610 Hz, die Verstärkung beträgt bei 20 kHz +9.49 dB.

Ein inverses Filter ergibt sich nach Selektion von Band 5 mit Filtertyp Shelf, Q auf 0,5, Frequenz auf 5,2 kHz, und Gain auf -9,5 dB. Eine Pre-emphasis entsteht mit den gleichen Einstellungen, aber Gain auf +9,5 dB.

Die Messung unten zeigt diese Einstellungen gegen die De-emphasis im DAC.

34.5 Rauschabstand in den Hi-Speed Modi

Der hervorragende Rauschabstand der AD-Wandler des ADI-2 Pro lässt sich auch ohne teures Mess-Equipment verifizieren, mittels der Aufnahme-Pegelanzeigen diverser Software. Bei Umschaltung in den DS- und QS-Betrieb steigt das angezeigte Grundrauschen jedoch von circa - 120 dB auf circa -114 dB bei 96 kHz, und –92 dB bei 192 kHz. Hierbei handelt es sich um keinen Fehler. Bei dieser Art der Pegelmessung wird das Rauschen im gesamten Frequenzbereich erfasst, bei 96 kHz Samplefrequenz also von 0 Hz bis 48 kHz (RMS unbewertet), bei 192 kHz von 0 Hz bis 96 kHz.

Wird der Messbereich dagegen bei 192 kHz Samplerate auf den Bereich 20 Hz bis 20 kHz begrenzt (sogenannter Audio-Bandpass), ergibt sich wieder ein Wert von -120 dB. Dies ist auch mit DIGICheck nachvollziehbar. In der Funktion **Bit Statistic & Noise** misst DIGICheck das Grundrauschen mit *Limited Bandwidth*, ohne DC und unhörbare hochfrequente Anteile.

File Functio	on Option	ns Help								
🖻 🖬 🛛	ש <mark>FN</mark> C ד	× 👾	8							
Subframe	MSB	Aı	udio Data		LSB	AUX	CUV	RMS LB [dB+3]	RMS [dBA+3]	DC [dB]
1 - Left							• 0 0	-121.1	-124.2	-138.8
2 - Right							• 0 0	-121.1	-124.2	-138.6
Bits	4	8	12	16	20	24	î.	20Hz 20kHz	A-weighting	0Hz

Der Grund für dieses Verhalten ist das Noise-Shaping der AD-Wandler. Sie erreichen ihren hervorragenden Klang, indem sie Störprodukte in den unhörbaren Frequenzbereich über 40 kHz verschieben. Dort nimmt das Rauschen also leicht zu. Aufgrund des hohen Energiegehaltes hochfrequenten Rauschens, sowie der verdoppelten bzw. vervierfachten Bandbreite, ergibt sich bei einer breitbandigen Messung ein deutlich verringerter Rauschabstand, während sich der hörbare Rauschanteil nicht im Geringsten verändert.

Wie im nächsten Bild zu sehen bleibt der Rauschteppich selbst außerhalb des Hörbereichs auf bemerkenswert niedrigem Niveau. Bei Samplefrequenzen von 96 kHz oder höher erfolgt das Noise-Shaping komplett außerhalb des Hörbereichs. Bemerkenswert sind auch die verbesserten Noise-Shaping Filter des im ADI-2 Pro genutzten ADC, mit Anpassung an die bereitgestellten höheren Samplefrequenzen. Tatsächlich ist der Rauschanstieg über die Frequenz deutlich niedriger als in früheren Wandlern, wo beispielsweise eine Weitbereichsmessung über 96 kHz nicht -92 dBFS, sondern nur -79 dBFS erreichte.

Wie in professionellen Digital Audio Workstations üblich sind die Pegelanzeigen des ADI-2 Pro auf 40 kHz bandbegrenzt. Sie zeigen daher alles im Audiobereich und knapp darüber, nicht jedoch die extremen Rauschpegel von 768 kHz und DSD.

34.6 SteadyClock

RMEs SteadyClock-Technologie garantiert exzellentes Verhalten in allen Clock-Modi. Die höchst effiziente Jitterunterdrückung erneuert und säubert jedes Clock-Signal.

Üblicherweise besteht eine Clock-Sektion aus einer analogen PLL für externe Synchronisation, und verschiedenen Quarzen für interne Synchronisation. SteadyClock benötigt nur noch einen Quarz, dessen Frequenz ungleich der von Digital-Audio ist. Modernste Schaltungstechniken wie Hi-Speed Digital Synthesizer, Digital-PLL, 1 GHz Abtastfrequenz und analoge Filterung erlauben es RME, eine vollkommen neu entwickelte Clock-Technologie kosten- und platzsparend direkt im FPGA zu realisieren, deren Verhalten professionelle Wünsche befriedigt. Trotz ihrer bemerkenswerten Merkmale ist SteadyClock vergleichsweise schnell. Es lockt sich in Sekundenbruchteilen auf das Eingangssignal, folgt auch schnellen Varipitch-Änderungen phasengenau, und lockt sich direkt im Bereich 28 kHz bis 200 kHz.

Die weiter verbesserte SteadyClock FS Technologie weist eine noch höhere Jitterunterdrückung bei noch geringerem Eigenjitter auf. Aufgrund der effizienten Jitterunterdrückung arbeiten AD- und DA-Wandlung immer optimal und auf höchstem klanglichen Niveau, vollkommen unabhängig von der Qualität der Referenz-Clock.

SteadyClock wurde ursprünglich entwickelt, um aus der stark verjitterten MADI-Clock eine stabile und saubere Clock zu gewinnen (die in MADI enthaltene Referenz weist rund 80 ns Jitter auf). Mit den Eingangssignalen des ADI-2 Pro, ADAT, AES und SPDIF ist ein solch hoher Wert sehr unwahrscheinlich. Es zeigt aber, dass SteadyClock grundsätzlich in der Lage ist, mit solch extremen Werten umzugehen. Üblicher Interface-Jitter liegt in der Praxis unter 10 ns, ein sehr guter Wert sind weniger als 2 ns.

Der Screenshot zeigt ein mit circa 50 ns extrem verjittertes SPDIF-Signal (obere Linie, gelb). Dank SteadyClock wird daraus eine Clock mit weniger als 2 ns Jitter (untere Linie, Blau). Das von SteadyClock prozessierte Signal wird natürlich nicht nur intern benutzt, sondern dient auch zur Taktung des digitalen Ausgangs. Daher kann das gesäuberte und von Jitter befreite Signal bedenkenlos als Referenz-Clock benutzt werden.

Die obigen Werte beziehen sich auf *Interface Jitter*, der direkt am Wordclock-Ausgang oder dem digitalen Signal selbst gemessen wird. Der sogenannte *Sampling Jitter*, üblicherweise im Bereich von wenigen Pikosekunden, ist im ADI-2 Pro FS ebenfalls sehr niedrig. Ein Weg dies zu zeigen besteht in der Ausgabe eines speziell modulierten 11,025 kHz Sinus über den analogen Ausgang, und die Analyse des gesampelten Resultats. Jitterprodukte erscheinen in der FFT als symmetrische Seitenbänder in Form von schmalen Nadeln. Das Bild unten zeigt solch eine Messung und Analyse unter Verwendung von zwei ADI-2 Pro und zwei Pro FS, jeweils einer als Generator und Analysator – und keine auffälligen Seitenbänder, die möglicherweise als Jitter hörbar sein könnten. Die Messung zeigt auch die Verbesserung der Clock im FS. Bemerkenswert ist, dass beide Modelle bei interner und externer Clock die genau gleiche Messung zeigen – ein typisches Merkmal der SteadyClock Technologie.

34.7 AD Filterkurven

34.8 DA Filterkurven 44,1 kHz

34.9 DA Impulsantworten

Die obigen Bilder zeigen das analoge Ausgangssignal der Filter des DAC, angeregt von einem digitalen Single Sample Impuls bei 44,1 kHz Samplefrequenz. Slow hat zwar die optimalste Antwort, verliert aber schon bei 15 kHz circa 1,2 dB, siehe Kapitel 34.8. Die beiden Short Delay sind IIR-Filter, die anderen beiden FIR. FIR ist phasenlinear über den Frequenzgang.

1 ms

NOS (Non-Oversampling, SuperSlow)

1

Der DAC enthält ein weiteres Filter, im Datenblatt *Super Slow* genannt, dessen Impulsantwort perfekt aussieht. Eine Prüfung des Ausgangssignals mit einem DSO zeigt Stufen, die eher typisch für sogenanntes Non-OverSampling (NOS) sind. Deshalb wird dieser Modus im DAC Filter-Menü auch *NOS* genannt. Es gibt aber keine hörbare Verzerrung, denn die Stufen entsprechen sehr hochfrequenten Harmonischen, meist deutlich höher als 20 kHz. Zu beachten ist allerdings, dass Slow- und NOS-Filter sehr viel mehr Spiegelfrequenzen im Audiobereich, und Noise außerhalb desselben erzeugen als Sharp-Filter.

34.10 AD Impulsantworten

Der ADI-2 Pro bietet auf AD-Seite vier Filter: *Short Delay Sharp, Short Delay Slow, Sharp* und *Slow.* Diese verhalten sich prinzipiell genau wie die bereits beschriebenen Filter des DAC. SD Sharp und Sharp bieten den linearsten Frequenzgang und bestmögliche Unterdrückung von Spiegelungen (Aliasing) bei hochfrequenten Eingangssignalen. SD Slow und Slow versuchen eine gute Aliasingunterdrückung mit einer optimalen Impulsantwort zu kombinieren, müssen dazu aber relativ früh im Hörbereich eingreifen. Siehe Kurven in Kapitel 34.7, SD Sharp/SD Slow hat jeweils den gleichen Frequenzgang wie die dargestellten Sharp/Slow.

Im nebenstehenden Bild sind die Impulsantworten der Filter *Short Delay Sharp* (links) und *Short Delay Slow* (rechts) bei 44,1 kHz zu sehen. Das Quellsignal ist ein analoger Single Sample Impuls (siehe Bild NOS in Kapitel 34.9). Dieser enthält Frequenzanteile oberhalb der halben Samplefrequenz, die vom Aliasingfilter des AD-Wandlers entfernt werden müssen. Daher ist es bei 44,1 kHz Samplefrequenz unmöglich, eine solche Signalform ohne Verrundung oder Pre/Post-Ringing zu digitalisieren.

SD Sharp und SD Slow sind IIR Filter, die hauptsächlich Nachschwingen erzeugen, aber nicht phasenlinear sind. Der Vorteil von IIR liegt in der extrem kurzen Latenz von wenigen Samples, was besonders nützlich beim Monitoring im Studio ist.

Die Impulsantworten der Filter *Sharp* (links) und *Slow* (rechts) bei 44,1 kHz zeigt das Bild rechts. Beide sind FIR Filter, und weisen sowohl Vor- als auch Nachschwingen auf. FIR besitzt generell eine etwas höhere Latenz, ist dafür aber phasenlinear über den Frequenzgang. Slow zeigt hier eine geringere Amplitude - die bereits im Hörbereich erfolgende Absenkung, aber auch sehr geringes Vorund Nachschwingen.

SD Slow und Slow arbeiten optimal bei 88,2/96 kHz, da dann die Absenkung außerhalb des Hörbereichs beginnt, bei fast perfekter Impulsantwort – sowohl durch das Filter, als auch durch die doppelte Samplefrequenz.

Im Modus Preamp wird das analoge Signal erst AD, dann DA konvertiert. Im Werkszustand passiert das mit 192 kHz Samplefrequenz. Dabei wird der gleiche Impuls sehr viel sauberer aufgenommen und wiedergegeben, denn die vierfach höhere Samplefrequenz tastet den 44.1 kHz Single Sample Impuls mindestens vierfach ab, und auch die Filter arbeiten bei sehr viel höherer Frequenz. Das Pre- und Post-Ringing ist daher vier mal so schnell, und insgesamt nur ein Viertel so lang. Aber auch in diesem Fall erzeugen Slow und NOS die perfektesten Impulsantworten.

34.11 Messungen des Frequenzgangs

34.12 Loudness

Ch1 ADI-2 Pro: THD DA, 1 kHz @ -1 dBFS dBFS Hpw FFT Points = 262144 0 f(Peak) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 2 -130 -140 -150 -160 -170 -180 0,0 5,0k 10,0k 15,0k 20,0k SNR = 114.258 dB THD = -113.982 dB (0.000200 %) THD+N = -111.108 dB (0.000278 %) Fs = 44,10 kHz Hz RMS = -1.003 dBFS

34.13 Messungen des Klirrverhaltens

Extreme Power: Power vs Impedance

Extreme Power: Current / Voltage vs Impedance

34.15 Vergleich des Klirrverhaltens Phones Out

Phones Out THD+N @ 32 Ohm Load

34.16 Impedanzkorrigierte Pegelanzeige PH 1-4

Die horizontale Pegelanzeige diverser Bildschirme der Ausgänge 1 bis 4 zeigt den in den DAC eingespeisten digitalen Pegel. Oberhalb 32 Ohm stimmt die Anzeige mit dem realen analogen Ausgangspegel überein (0 dBFS = +22 dBu). Bei 32 Ohm erreicht der ADI-2 Pro aber nur +19 dBu, bei 16 Ohm +15 dBu am Phones Out, weil eine sinnvolle Strombegrenzung zu hohe Ausgangsleistungen bei kleineren Impedanzen verhindert. Der höchste unverzerrte Wert wäre bei 16 Ohm im Hi-Power Modus -7 dB auf der Pegelanzeige. Sie müsste entweder ihre Farbe auf rot wechseln, oder den Nullpunkt auf -7 umskalieren. Dann wäre der Anwender immer klar informiert, welcher maximale Pegel unverzerrt vom Gerät ausgegeben werden kann. Solch ein Merkmal findet sich allerdings bei keinem uns bekannten Gerät. Das ändert sich jetzt.

Da die Strombegrenzung der Extreme Power Ausgangsstufen relativ feinfühlig arbeitet, lässt sich ihr Ansprechen dynamisch auswerten und für eine vereinfachte Impedanzerkennung nutzen, welche dann als Grundlage für eine Umskalierung des Level Meters dient.

Genau das geschieht vollautomatisch im ADI-2 Pro. Die Zahlenwerte rechts bleiben als Pre-DAC-Info unverändert, jedoch verschiebt sich der gelbe und erweitert sich der rote Bereich nach links.

Nach korrekter Lautstärkeeinstellung, mit der das Level Meter unterhalb des roten Bereichs bleibt, kann sich der Anwender nun 100% sicher sein, dass der ADI-2 Pro absolut verzerrungsfrei arbeitet, selbst in den extremsten Anwendungsfällen.

<u>Hinweise zur Funktion</u>: Die Umskalierung tritt erst ein, wenn der höchstmögliche unverzerrte Pegel überschritten wird. Die Umskalierung bleibt so lange erhalten bis der Klinkenstecker entfernt wird. Eine länger andauernde Übersteuerung, in diesem Fall eine Überlastung, führt zur Aktivierung der Overload-Warnung mit Abschaltung des Kopfhörerausgangs.

34.17 USB Audio (Windows)

Ein ADI-2 Pro erreicht an einem modernen PC durchaus eine ähnliche Performance wie eine PCI- oder PCI-Express Soundkarte. Geringe CPU-Last und eine knacksfreie Nutzung von 64 Samples Puffergröße sind auf aktuellen Rechnern möglich. Auf etwas älteren Rechner dagegen verursacht schon ein simples Stereo-Playback eine CPU-Last von über 30 %.

Ein kurzzeitig blockierter Rechner führt – egal ob WDM oder ASIO - zu einem Verlust eines oder mehrerer Datenpakete. Solche Probleme sind nur durch eine höhere Buffer Size (und damit Latenz) vermeidbar.

Der ADI-2 Pro enthält eine einzigartige Datenprüfung, die Fehler auf dem USB-Übertragungsweg erkennt und im Settingsdialog anzeigt. Außerdem enthält er einen speziellen Mechanismus, der die aktuelle Sampleposition automatisch korrigiert. Er erlaubt es, trotz Aussetzern mit Aufnahme und Wiedergabe fortzufahren.

USB Diagnosis -|34|-0 crc5 / 5.2 min

Der ADI-2 Pro sollte – wie alle Audiointerfaces – eine möglichst ungestörte Datenübertragung zum Computer besitzen. Dies lässt sich am einfachsten garantieren, indem der ADI-2 Pro an einen eigenen Bus angeschlossen wird. Dies sollte ohne weitere Hardware möglich sein, da gängige USB 2.0 Interfaces immer im Doppelpack daherkommen. Eine Prüfung im Windows Geräte-Manager erfolgt folgendermaßen:

- > ADI-2 Pro an einen USB-Port anschließen
- Serätemanager starten, Ansicht nach Verbindung wählen
- > ACPI x86-basierter PC, Microsoft ACPI konformes System, PCI Bus ausklappen

In diesem Zweig finden sich normalerweise zwei Einträge eines *USB2 Enhanced Host Controllers*. Über einen Root Hub sind daran dann die USB-Devices angeschlossen, auch der ADI-2 Pro erscheint dort. Durch einfaches Umstecken lässt sich in dieser Darstellung nun überprüfen, an welchem der beiden Controller er angeschlossen ist, und bei mehreren Geräten, ob diese am gleichen Controller hängen.

Diese Information lässt sich natürlich auch nutzen, um eine USB-Festplatte am Rechner zu betreiben, ohne den ADI-2 Pro zu stören, indem die Platte am anderen Controller betrieben wird. Außerdem gilt sie gleichermaßen für USB 3. Ports

Vor allem bei Notebooks kann es aber passieren, dass alle internen Geräte und alle Buchsen am gleichen Controller hängen, und der zweite Controller überhaupt nicht genutzt wird. Dann arbeiten alle Geräte am gleichen Bus und behindern sich gegenseitig.

Erfahrene RME Anwender kennen obigen Text aus den Handbüchern unserer anderen Interfaces mit sehr vielen Kanälen. Der ADI-2 Pro hat gegenüber diesen zwei Vorteile:

- Er lässt sich in den Stereo-Modus schalten, und baut dann nur einen isochronen Audiostream mit geradezu lächerlichen zwei Kanälen auf
- Er muss in den allermeisten Fällen nicht mit minimaler Latenz arbeiten. Das Einstellen der ASIO-Puffer auf höchste Größe bewirkt eine deutlich störungsfreiere und stabilere Aufnahme und Wiedergabe.

Aber auch der 6/8 kanalige Multichannel Modus ist, verglichen mit den von RME unterstützen bis zu 70/70 Kanälen auf USB 2.0 - immer noch eine Minimallast.

Nicht unterschätzen sollte man hohe Samplefrequenzen, bei PCM wie DSD. Denn die erfordern eine zu übertragende Datenmenge, die einem Vielfachen eines Kanals mit 48 kHz entspricht:

Basis	48 kHz	96 kHz	192 kHz/DSD64	384 kHz/DSD128	768 kHz/DSD256
Kanäle	2	4	8	16	32

Und damit wird obiger Ratschlag wieder sehr relevant. Im Multi-channel Modus zeigt sich:

Basis	48 kHz	96 kHz	192 kHz/DSD64	384 kHz/DSD128	768 kHz/DSD256
Kanäle	8	16	32	64	128

384 kHz würde gerade noch so funktionieren, 768 kHz aber keinesfalls. Da der ADI-2 Pro aber auch unter iOS funktionieren soll, und es dort eine System-Bandbreitenbegrenzung gibt, ist sein USB-Übertragungsverfahren im Multi-channel Modus auf 192 kHz begrenzt. Das wiederum ist keine wirkliche Einschränkung, da die dann aktivierten digitalen Schnittstellen sowieso nicht mehr können.

Aber auch hier bleibt festzuhalten: bei 192 kHz wird die USB-Schnittstelle trotz nur acht Kanälen mit Datenmengen gefordert, die 32 Kanälen entsprechen.

34.18 ADI-2 Pro als Mess-Frontend

Audio Mess-Systeme waren (und sind) recht teuer. Schon vor Jahren begannen deutlich günstigere, Software-basierte Mess-Systeme die teuren Referenzen zu ersetzen, und zwar immer dann wenn die Messung keine absolute Genauigkeit erforderte. Auch wenn die Software selbst 100% genau ist, so ist doch die als Generator und Analyser genutzte Hardware oft nur eine gewöhnliche Soundkarte. Das begrenzt Rauschabstand, Klirrfaktor und Frequenzgang auf die Werte eben dieser Soundkarte.

Bei RME kommen nicht nur die bekannten Referenzen Audio Precision und Rohde&Schwarz zum Einsatz, sondern auch einfachere, manchmal deutlich flexiblere oder ungewöhnliche Lösungen. Ein Langzeit-Favorit ist <u>HpW Works</u>, eine Windows Analyser- und Generator-Software, welche von den RME-Entwicklern seit mehr als 20 Jahren eingesetzt wird. Die meisten der in diesem Handbuch gezeigten Mess-Diagramme wurden damit erstellt. In vielen Fällen werden die teuren Systeme nur noch zur Verifikation benutzt. Nicht weil HpW Works falsch messen würde, sondern wegen der eingeschränkten Hardware, die als I/O dient.

Das bringt uns direkt zum ADI-2 Pro. Eines der Entwicklungsziele war es, ihn so gut zu machen, dass er als Hardware-Frontend für Audio-Mess-Software nutzbar ist. Abgesehen von wenigen Einschränkungen sollte es für die Hardware ein leichtes sein, die meisten Audiointerfaces, DACs, ADCs und analoges Equipment des täglichen Gebrauchs zu messen. Tatsächlich wurde der ADI-2 Pro gebaut um jegliches vorherige RME-Gerät zu übertreffen.

Die im Handbuch gelisteten und gezeigten, überragenden realen Werte, machen den ADI-2 Pro zu einem der besten Hardware-Frontends. 120 dB Dynamik (RMS unbewertet), kein Brummen, Unterstützung für verschiedene Referenzpegel, niedrigstes Rauschen an den Ausgängen, sehr niedrige Klirrwerte, galvanisch getrennter Betrieb per Batterie/Akku, spezieller 384 kHz SPDIF Modus über optische Verbindungen, und Pegeltoleranzen die einfach unfassbar klein sind diese kleine Kiste rockt den Schreibtisch!

Da die meisten aktuellen Geräte eine Samplefrequenz von 192 kHz unterstützen, muss ein Hardware-Frontend mit 384 kHz arbeiten - sonst kann es nicht den vollen Frequenzgang des 192er erfassen. Aber selbst dann ist man vor Überraschungen nicht gefeit. So nutzt der DAC des ADI-2 Pro bei 384 kHz ein festes Slow-Filter, welches einen höheren Abfall bei hohen Frequenzen zeigt als das bei 192 kHz wählbare Sharp-Filter. Möchte man Abweichungen im Bereich ± 0,1 dB mit überragender Genauigkeit messen, hilft es wenig, dass bei einem Abfall von - 1,5 dB das 384 kHz Filter langsam anfängt bessere Werte zu erreichen als das 192er.

Eine effektive Lösung besteht im Einsatz eines digitalen Kompensationsfilters im DA-Pfad des ADI-2 Pro, aktiv immer und nur bei 384 kHz Samplefrequenz. Dieses Filter ist sorgfältig für einen nahezu perfekten Frequenzgang bei 384 kHz Schleifenmessung DA nach AD berechnet.

Das Bild unten zeigt den ADI-2 Pro im Modus Loopback, XLR Out zu In, bei 384 kHz Samplefrequenz. Die rote Kurve stellt den ursprünglichen Frequenzgang des DAC dar, beginnend bei 10 kHz (alles darunter ist gerader als eine Linie), und zeigt schon bei 70 kHz einen Abfall von 0,5 dB. Die schwarze Linie zeigt den verfügbaren Frequenzbereich bei 192 kHz Samplefrequenz mit Sharp-Filter. Sie dient auch als Beispiel, welchen Bereich ein Frontend akkurat messen können sollte (dabei ist dieser Frequenzbereich schon der weitest mögliche, da die analogen Ausgangsfilter des DACs von RME auf Linearität optimiert wurden).

Die blaue Kurve zeigt den Effekt des digitalen Kompensationsfilters bei 384 kHz Samplefrequenz. Der Frequenzgang ist nun bis zu 90 kHz glatt wie ein Lineal, mit keinem sichtbaren Abfall im Bereich des 192 kHz Beispiels. Dank dieses Filters kann der ADI-2 Pro den Frequenzgang jedes mit 192 kHz (oder natürlich auch darunter) betriebenen Geräts perfekt erfassen, mit einer Genauigkeit von Bruchteilen eines dB.

Natürlich verursacht das hinzugefügte digitale Kompensationsfilter Übersteuerungen, sobald ein Signal mit einem Pegel anliegt, der die Verstärkung des Filters bei der entsprechenden Frequenz übertrifft. Beispielsweise liegt der maximale unverzerrte Pegel bei 100 kHz nicht mehr bei 0 dBFS, sondern bei -2 dBFS. Erstaunlicherweise hat diese technische Einschränkung in der Praxis nur sehr geringe Bedeutung, aus mehreren Gründen.

Für alle Anwender:

- Die Korrektur betrifft nur den DAC bei 384 kHz. Der Frequenzgang des ADCs reicht weit höher, dort ist eine Korrektur weder notwendig noch vorhanden.
- Das zusätzliche Filter betrifft nur den Betrieb mit 384 kHz PCM. Im Modus DSD (hier DSD128) ist das Filter automatisch deaktiviert.
- Das zusätzliche Filter hat keine Bedeutung f
 ür normale Wiedergabe von 384 kHz PCM Material, da dieses keine so hohen Frequenzen mit Pegeln nahe der Vollaussteuerung enthält.

Für Techniker:

- In vielen Mess-Applikationen wird der Generatorpegel absichtlich niedriger als 0 dBFS eingestellt, z.B. Frequenzgang und Klirrfaktor (-1 oder -3 dBFS).
- Testsignale mit einer Frequenz nahe der Filterkurve des DAC f
 ühren oft zu Aliasing und anderen unerw
 ünschten St
 örprodukten. F
 ür saubere Messungen bei solch hohen Frequenzen wird der Pegel oftmals auf -10 dBFS reduziert.
- Solche hohen Frequenzen kommen nur sehr selten zum Einsatz. Eine typische hohe Messfrequenz wäre 10 kHz, die aber noch unterhalb des Einflussbereichs des Filters liegt, so dass selbst 0 dBFS kein Problem darstellen.

Aus all diesen Gründen lassen sich übliche Audiomessungen in den meisten Fällen ohne durch das zusätzliche Filter verursachte Abweichungen durchführen.

Es gibt aber auch einen einfachen Weg, jeglichen Störeinfluss komplett auszuschließen: Indem der digitale Ausgangspegel *nicht mehr als -4 dBFS* erreicht, entweder durch Einstellung direkt am Generator, oder am Volume des ADI-2 Pro. Durch diesen zusätzlichen Headroom lassen sich alle denkbaren Messvorgänge selbst mit den künstlichsten und unrealistischsten Testsignalen bei 384 kHz durchführen.

Der dabei entstehende Pegelfehler zwischen Ausgang und Eingangs-Referenzpegel bei Schleifenmessung mit dem ADI-2 Pro lässt sich bequem über *I/O - Analog Input - Trim Gain* um besagte 4 dB korrigieren..

Beispiele für Worst Case Headroom:

HpW FFR (Multisinus): nicht höher als -1 dBFS. Messungen mit Signalen bis 20 kHz: nicht höher als bis -0,03 dB. Bis zu 36 kHz: -0,1 dB. Bis zu 69 kHz: -0,5 dB. Bis zu 84 kHz: -1 dB. Bis zu 100 kHz: -2 dB.

Es sei noch einmal darauf hingewiesen, dass sich obiges auf Messanwendungen bei 384 kHz bezieht. Für alle anderen Anwendungen und Samplefrequenzen sind die Hinweise irrelevant.

34.19 Tipps zum Einsatz im Bereich Hi-Fi

Der ADI-2 Pro ist nicht nur bei professionellen Anwendungen, sondern auch beim Einsatz zu Hause an der Stereoanlage ein Gewinn. Doch während im Tonstudioumfeld arbeitende Anwender Steckerformate und Referenzpegel im Schlaf beherrschen, verursachen die nicht vorhandenen Cinch-Buchsen bei anderen die Frage, ob sich das Gerät überhaupt für Hi-Fi eignet, und wie es dann anzuschließen ist. Dieses Kapitel beantwortet diese Fragen.

Wie schließe ich das Gerät an meine anderen Geräte an, die nur Cinch aufweisen?

Mit einem simplen Adapter Mono-Klinke 6,35 mm auf Cinch (auch Phono und RCA genannt). Die Adapter werden einfach in die beiden hinteren Ein- und Ausgänge gesteckt - fertig. Nun lassen sich die vorhandenen Cinch-Kabel am ADI-2 Pro nutzen.

Es gibt auch Kabel von Mono-Klinke auf Cinch, die natürlich auch bestens funktionieren. Die Steckeradapter-Lösung hat den Vorteil, dass die bevorzugten Cinch-Kabel des Anwenders zum Einsatz kommen können.

Hat dies eine Verschlechterung des Klangs zur Folge?

Nein, aus zwei Gründen. Der Eingang des ADI-2 Pro ist mit 9 kOhm Impedanz hochohmig genug, um auch ältere Hi-Fi-Geräte mit hochohmigeren Ausgängen (bis zu 1 kOhm) nicht zu überfordern. Bei neueren Geräten mit deutlich unter 1 kOhm natürlich erst recht nicht. Außerdem ist der Eingang des ADI-2 Pro so konstruiert, dass egal ob das Signal symmetrisch (XLR) oder unsymmetrisch (Monoklinke) zugeführt wird, die exakt gleichen technischen Daten erreicht werden. Der bei RME als servo-symmetrisch bezeichnete Eingang führt auch zu einer automatischen Pegelanpassung - selbst die Referenzpegel sind also weiter identisch.

Bei den Ausgängen verursacht solch ein Adapter überhaupt keine Änderung - technische Daten und Funktionsweise bleiben unverändert. Die Ausgänge des ADI-2 Pro beliefern auch Cinch-Eingänge ohne jegliche Probleme.

Bleiben die Vorteile des vollsymmetrischen Aufbaus des ADI-2 Pro auch bei unsymmetrischem Anschluss (Cinch) erhalten?

Ja. Denn das unsymmetrische Eingangssignal wird direkt nach der ersten Eingangsstufe intern symmetriert. Auf der Ausgangsseite verwendet RME ein speziell entwickeltes, servosymmetrisches DAC-Filter, welches dafür sorgt, dass beide Pfade der symmetrischen Signalführung vollen Rauschabstand und Klirrfaktor aufweisen. Daher werden die technischen Daten sogar erreicht, wenn man den symmetrischen XLR-Ausgang benutzt, und einen Pin zwecks unsymmetrischer Ausgabe nicht anschließt - die dafür erforderliche Signaloptimierung geschieht schon im Gerät. Am typischen Cinch-Ausgang, also der Monoklinkenbuchse mit eingestecktem Adapter, erfolgt direkt vor der Buchse trotzdem eine zusätzliche Umwandlung symmetrisch in unsymmetrisch. Dieser erhöhte Aufwand garantiert die exzellente Klangqualität des ADI-2 Pro für sämtliche Betriebs- und Anschlussarten.

Welche Pegeleinstellung sollte man wählen?

Als professionelles Gerät bietet der ADI-2 Pro Ein- und Ausgangpegel bis +24 dBu (12,24 V RMS), die übliches Hi-Fi Equipment vollkommen überfordern. Das ist jedoch kein Problem, da insgesamt vier Referenzpegel zur Verfügung stehen. Für Hi-Fi empfiehlt sich die Einstellung +4 dBu (entspricht +1,78 dBV oder 1,23 V RMS). In dieser Einstellung erreicht der Ausgang des ADI-2 Pro einen ähnlichen Pegel wie viele CD-Player. Sollte das im konkreten Fall zu niedrig sein spricht natürlich nichts gegen die Einstellung +13 dBu (+10,8 dBV, 3,46 V RMS).

Falls der Eingangspegel selbst bei +4 dBu noch zu niedrig ausfällt, weil das speisende Gerät einen sehr niedrigen Ausgangspegel aufweist, lassen sich über *I/O - Analog Input - Trim Gain* noch bis zu 6 dB mehr Pegel herausholen.

Führt solch ein geringer Pegel nicht zu einer deutlichen Erhöhung des Rauschens?

Üblicherweise ja - nicht jedoch im ADI-2 Pro. Die Umschaltung der Referenzpegel geschieht in der 'analogen' Hardware, also diskret. Die Schaltung wurde so optimiert, dass selbst bei +4 dBu nahezu der volle Rauschabstand erreicht wird. Die genauen Daten dazu finden sich in Kapitel 33.1 / 33.2. Den Eingangsrauschabstand kann jeder Anwender sogar selbst verifizieren, mit dem kostenlosen Tool DIGICheck, Funktion *Bit Statistics & Noise* (siehe Kapitel 26 / 28). Bitte beachten Sie, dass für die Ermittlung des Rauschabstands die Eingänge mit 0 Ohm abzuschließen sind.

Die Verringerung des Rauschabstands bei +4 dBu um nur knapp 1 dB ist eine herausragende Ingenieursleistung. In der Praxis wird Ihnen DIGICheck allerdings noch auf andere Weise die Augen öffnen. Sobald irgendetwas am Eingang des ADI-2 Pro angeschlossen wird, muss man sich leider von diesen traumhaften Werten verabschieden. Das Grundrauschen und -brummen, insbesondere von Geräten im Hi-Fi-Bereich, liegt um Größenordnungen höher...

Wie kann ich schnell zwischen USB-Wiedergabe und dem digitalen Eingang umschalten bzw. diesen abhören?

Der ADI-2 Pro adressiert diesen Fall eigentlich mit seinem Auto Modus – der aber nicht funktioniert, wenn das USB-Kabel im ADI-2 Pro verbleibt, und der Computer weiter eingeschaltet ist. Die Umschaltung der Source des Main Output 1/2 ist im USB-Modus gesperrt, er dient ja der Wiedergabe. Die Lösung besteht darin, den Basic Mode manuell von *Auto* auf *AD/DA* zu ändern. Mehr ist nicht nötig, der ADI-2 Pro wird in der Werkskonfiguration ein digitales Signal am koaxialen oder optischen Eingang erkennen, und dies sofort über Mains Out 1/2 wiedergeben.

Die Basic Modi finden sich im Menü SETUP - Options - Device Mode. Da sich das Gerät das zuletzt gewählte Menü merkt, besteht der gesamte Vorgang im Idealfall aus dem Drücken der Taste SETUP, und des Drehens des Encoders 2, um zwischen USB (oder Auto) und AD/DA umzuschalten.

Je nach Konfiguration kann sich der Vorgang aber auch komplizierter gestalten. Wird z.B. der SRC absichtlich deaktiviert, muss sich der ADI-2 Pro normalerweise auf das digitale Eingangssignal synchronisieren. Während die *Clock Source* (gleiches Menü SETUP - Options, Seite Clock) bei USB im Heimbereich typisch auf INT(ern) steht, ist nun die Einstellung SPDIF erforderlich. Bei der Rückkehr zu USB sind also Basic Mode und Clock Source zurückzustellen. Was im Studio ein ganz normaler Vorgang ist wirkt im Privateinsatz ziemlich umständlich.

Doch auch dafür hat der ADI-2 Pro eine Lösung: speicherbare Setups, und die Zuweisung dieser Setups auf die Funktionstasten als Schnellzugriff. So funktioniert's:

Zunächst wird der aktuelle Zustand während der USB-Wiedergabe als Setup 1 gespeichert:

Taste SETUP drücken, Encoder 1 drehen (Menü Setups erscheint), Encoder 2 drehen bis im Feld *Setup Select* die Auswahl *Store 1* erscheint. Nun Encoder 2 so lange drücken bis der Cursor zum untersten Feld gesprungen ist, und das Setup gespeichert wurde (oder alternativ zwischendurch einen anderen Namen eingeben – dies kann aber auch später erfolgen).

Nun das Gerät für die Wiedergabe der digitalen Quelle umkonfigurieren – Basic Mode AD/DA, Clock Source SPDIF etc. Als nächstes wird dieser Zustand auf dem Speicherplatz 2 abgelegt. Vorgang wie oben, aber diesmal mit der Auswahl *Store 2*.

Im gleichen Menü lässt sich nun Setup 1 oder Setup 2 laden. Eine direkte Umschaltung zwischen diesen beiden Setups/Zuständen, ohne ins Menü gehen zu müssen, gelingt über *Remap Function Keys*, im Menü SETUP - Options, SPDIF / Remap Keys. Nach Aktivierung des Eintrags *Remap Keys* (ON) sind die Einträge darunter nicht mehr ausgegraut. Es lassen sich nun Setup 1 und Setup 2 beispielsweise den Tasten VOL und I/O zuweisen.

Danach führt ein Druck auf die Taste VOL zum Laden des Setup 1, also des USB Modus, und ein Druck auf die Taste I/O zum Laden des Setup 2, also des 'Digital In' Modus. Der Name des Setups erscheint kurz in einem Hinweisfenster, das Ändern des Namens lohnt sich also.

Die ursprüngliche Funktion der jeweiligen Funktionstaste, der Aufruf des Menüs, ist über ein längeres Drücken der Taste (0,5 s) weiterhin möglich.

Seit Firmware 144/78 bietet der ADI-2 Pro eine weitere Lösung. Der neue Basic Mode **DAC** bietet genau die gewünschte Funktion: automatisches Umschalten der Clock bei Umschaltung der Abhörquelle. Damit ist auch keine Abspeicherung auf den Tasten mehr notwendig.

34.20 Digital Volume Control

Der ADI-2 Pro verzichtet bewusst auf eine analoge Lautstärkeeinstellung mittels Potentiometer. Seine digitale Pegeleinstellung in TotalMix-Technologie übertrifft eine analoge in praktisch allen Punkten. Typische Nachteile einer Einstellung mit Potentiometer sind:

- Gleichlaufabweichungen führen zu Panoramaverschiebungen und deutlichen Lautstärkeabweichungen links/rechts, insbesondere nahe den Endpunkten des Einstellweges.
- Im mittleren Einstellbereich kommt es zu erhöhtem Übersprechen und Änderungen im Frequenzgang. Änderungen im Frequenzgang treten auch an den Endbereichen des Einstellweges auf.
- Der Einstellbereich für eine optimale Lautstärkeeinstellung ist oftmals zu klein, oder am unteren oder oberen Ende des Poti-Drehbereichs.
- Nicht reproduzierbare Einstellungen (außer 0 und 11).
- Höherer THD/THD+N. Ein Punkt, der Messtechnikern aus der Praxis bestens bekannt ist. Sobald ein analoges Potentiometer im Signalweg ist verursacht der instabile Kontakt des Schleifers mit der Widerstandsbahn Störgeräusche, die sowohl THD (Klirr) als auch N (Noise) enthalten, selbst im stationären Zustand. So werden aus den -110 dB des DAC schnell -80 bis -70 dB.

Spezielle Lautstärke-ICs, welche mittels zahlreicher elektronischer Schalter verschiedene Widerstandswerte aktivieren, vermeiden zwar einige der genannten Punkte. Leider erreichen selbst die besten dieser ICs weder THD noch Dynamik des im ADI-2 Pro verwendeten DACs, würden also dessen analoges Ausgangssignal beeinträchtigen.

All dies ist jedoch für RMEs digitale Lautstärkeeinstellung kein Thema!

Eine analoge Lautstärkeeinstellung hat tatsächlich nur in einem einzigen Punkt einen (theoretischen) Vorteil: dem maximalen Rauschabstand bei höherer Pegelabsenkung. In der Realität holt die aktuelle Schaltungstechnik die Theorie ein - der SNR am Ausgang eines derart aufgebauten Gerätes ist auch nicht besser als der eines mit digitaler Einstellung. Dies gilt umso mehr je hochwertiger der DA-Wandler arbeitet, und je weniger Rauschen er aufweist. So wie beim ADI-2 Pro, der mit vier, diskret realisierten Referenzpegeln, den maximalen Rauschabstand des DAC über einen weiten Pegelbereich von 20 dB zur Verfügung stellt.

Der größte Kritikpunkt an einer digitalen Pegelverstellung ist ein angeblicher Auflösungsverlust bei höheren Absenkungen. So würde bei einem Rauschabstand von 117 dB, was grob 19 Bit verfügbarer Auflösung entspricht, und einer Pegelabsenkung um 48 dB (8 Bit) noch 11 Bit Auflösung verbleiben. Eine solche, wichtige Details weglassende Beweiskette, endet dann mit: die Musik muss an leisen Stellen verzerrt klingen, und der Rauschabstand beträgt nur noch unbrauchbare 69 dB.

Ersteres ist schlicht falsch, letzteres in der Praxis irrelevant. Der reduzierte Rauschabstand ist tatsächlich vorhanden, nur stört er nicht im Geringsten, denn das Grundrauschen war schon vorher unhörbar (unterhalb der Hörschwelle), und ist es nach der Pegelabsenkung immer noch. Außerdem weisen Geräte mit Potentiometer diesen Effekt ebenfalls auf, denn das Poti sitzt niemals am Ausgang, sondern mitten in der Schaltung, gefolgt von weiterer Elektronik, die ebenfalls ein festes Grundrauschen aufweist.

Die Qualität der digitalen Volume Control des ADI-2 Pro lässt sich am besten messtechnisch aufzeigen. Für eingeschworene Verfechter der analogen Einstellung wird es jetzt hart, denn hier zeigt sich sehr klar, dass die einer digitalen nachgesagten Nachteile, wie Rauhigkeit und Verzerrungen bei höheren Absenkungen, schlicht nicht existieren – zumindest bei RME.

Die folgende Messung zeigt einen Vollpegel-Sinus von 1 kHz, mit 16 Bit ohne Dither, der um 40 dB im Pegel reduziert wird. Außerdem einen Vollpegel-Sinus 1 kHz 24 Bit mit jeweils 60 dB und 96,3 dB Vol-Absenkung, also der untersten Lautstärkeeinstellung des ADI-2 Pro.

Eine hochauflösende FFT wie HpW Works ermöglicht es, die Bestandteile des Signals in einzelne Frequenzen zu zerlegen, und so Störprodukte bis zu einem Pegel von -190 dBFS nachzuweisen. Die Messung zeigt, dass das ungeditherte 16 Bit Signal keine Verzerrungsprodukte oberhalb von -170 dBFS aufweist. Bei einer Volume-Einstellung von -40 dB ergibt sich somit ein messbarer Mindest-THD von knapp -130 dB. Bei 24 Bit ergibt ein Vol von -60 dB ebenfalls eine Klirrfreiheit von -130 dB, und bei Vol -96,3 dB sind es immer noch -93 dB.

Dies zeigt anschaulich, dass Verzerrungsprodukte der digitalen Lautstärkeeinstellung nicht etwa vom Rauschen des DACs übertönt werden, sondern gar nicht erst entstehen. Sie arbeitet selbst mit einem ungeditherten 16 Bit Signal perfekt, es entstehen keinerlei nachweisbare Verzerrungen.

Wird die Volume Control am analogen Ausgang gemessen, reduziert sich der nachweisbare THD durch das Eigenrauschen des DAC (SNR 117 dB RMS unbewertet) bei Vol von -60 dB auf -100 dB. In der obigen Messung entspricht dies einem gleichmäßigen Rauschteppich bei -160 dBFS. Die digitale Volume Control des ADI-2 Pro arbeitet also um einiges genauer und sauberer als es aktuelle Spitzen-DACs erfordern.

Zusammengefasst lässt sich festhalten:

RMEs digitale Lautstärkeeinstellung in 42 Bit TotalMix Technologie vermeidet alle Nachteile analoger Pegeleinstellung per Poti, ist einfach zu bedienen, bietet reproduzierbare Einstellungen, und allerhöchste Klangqualität.

34.21 Bit Test

Ein Bit Test dient zur Überprüfung des Wiedergabewegs auf unerwünschte Veränderungen der Wiedergabedaten. Eine Wiedergabesoftware kann Bits abschneiden, dithern, oder den Pegel verändern, ohne dass diese Änderungen nach außen sichtbar sind. Ein schlecht programmierter Treiber kann ebenfalls Bits manipulieren, und eine Wiedergabehardware könnte sowohl fehlkonstruiert als auch defekt sein (hängende Bits, vertauschte Bits). Selbst solche Eigenschaften wie richtige Kanalzuweisung, Synchronität links/rechts und Polarität kann ein gut gemachter Bit Test prüfen.

Mit einem Bit Test lassen sich solche Fehler erkennen und – noch wichtiger – ausschließen.

Wie funktioniert's?

Die meisten Bit Tests dauern relativ lang, und sind bei Wiedergabe über Kopfhörer oder Lautsprecher laut und unangenehm. RME nutzt ein eindeutiges Bit-Muster, mit definierten Pegeln und Pausen. Dieses besteht aus nur 400 Samples (< 10 ms), und klingt wie ein dumpfer, mittellauter Knacks – harmlos für Ohren und Equipment. Die kurze, aber effiziente Testsequenz ermöglicht eine Prüfung unter anderem auf folgende Änderungen und Fehler:

Pegeländerung, Equalizing, Dynamikbearbeitung, Polarität, Kanalvertauschung, Sampleversatz, hängende oder verdrehte Bits, Dither, Bitreduktion.

Das Signal gelangt per USB, AES oder SPDIF/ADAT in den ADI-2 Pro. Dieser besitzt drei ständig mitlaufende Prüfeinheiten. Wird das Testsignal korrekt erkannt gibt das Gerät eine Meldung im Display aus: *Bit Test 16 Bit, 24 Bit* oder *32 Bit - passed*, je nach detektiertem Signal. Ist der Übertragungsweg nicht Bit-Transparent, das Signal nur minimal verändert, erscheint die Meldung nicht, der Bit Test wurde also nicht bestanden. Es erfolgt kein Fehlerhinweis.

RME stellt mehrere Audiodateien zum freien Download zur Verfügung: 44.1, 96 und 192 kHz in jeweils 16 Bit, 24 Bit und 32 Bit. Diese Dateien im WAV-Format lassen sich plattformunabhängig auf Windows, Mac OS X und Linux abspielen. Für eine leichtere Nutzung (Loop, Player mit Fade-In/Out) enthalten die Dateien das Bit-Muster mehrfach, und sind 4 Sekunden lang.

Download:

http://www.rme-audio.de/download/bit test wavs.zip

Das Zip-Archiv enthält:

441_16_adi2pro_bittest.wav	441_24_adi2pro_bittest.wav	441_32_adi2pro_bittest.wav
96_16_adi2pro_bittest.wav	96_24_adi2pro_bittest.wav	96_32_adi2pro_bittest.wav
192_16_adi2pro_bittest.wav	192_24_adi2pro_bittest.wav	192_32_adi2pro_bittest.wav

Theoretisch reicht die Nutzung des 32 Bit Files. Werden die unteren Bits auf dem Übertragungsweg einfach nur abgeschnitten, erscheint die entsprechende Meldung mit der jeweils erkannten Bitauflösung, also 24 oder 16 Bit.

Hinweise:

- > iOS, AES, SPDIF und ADAT sind auf 24 Bit begrenzt.
- In Mac OS X bieten einige Player einen Direct Mode mit 32 Bit Integer im Non-Mixable Format. Der 32 Bit Test kann trotzdem fehlschlagen. Aktuell besteht ihn HQPlayer 3.20.
- SPDIF/ADAT und AES werden hinter dem Clocking und dem SRC geprüft. Das Gerät muss sich also korrekt auf das digitale Eingangssignal synchronisieren, und der SRC (Default: SPDIF In, aktiv) muss deaktiviert sein.

34.22 M/S Processing

Das Mitte/Seite-Prinzip beschreibt eine spezielle Positionierungstechnik bei Mikrofonaufnahmen, als dessen Resultat auf einem Kanal das Mittensignal, auf dem anderen das Seitensignal übertragen wird. Diese Informationen lassen sich relativ einfach wieder in ein normales Stereosignal zurückverwandeln. Dazu wird der monaurale Mittenkanal auf Links und Rechts gelegt, der Seitenkanal ebenfalls, allerdings auf Rechts mit 180° Phasendrehung.

Zum Verständnis sei angemerkt, dass der Mittenkanal die Funktion L+R darstellt, während der Seitenkanal L-R entspricht.

Da während der Aufnahme in 'normalem' Stereo abgehört werden muss, bietet der ADI-2 Pro auch die Funktionalität eines M/S-Decoders. Dieser wird in den Settings der Hardware I/Os über die Option **M/S-Proc** aktiviert.

Das M/S-Processing arbeitet je nach Eingangssignal automatisch als M/S-Encoder oder M/S-Decoder. Bei Verarbeitung eines normalen Stereosignales erscheinen am Ausgang des M/S-Processings alle Monoanteile im linken Kanal, alle Stereoanteile im rechten Kanal. Das Stereosignal wird also Mitte/Seite encodiert. Dabei ergeben sich einige interessante Einblicke in die Mono/Stereo-Inhalte moderner Musikproduktionen.

Außerdem erlaubt es eine ganze Reihe von Eingriffsmöglichkeiten in die Stereobasis, da sich die Stereoanteile des Eingangssignals nun einfachst manipulieren lassen, indem der Seitenkanal mit Low Cut, Expander, Compressor oder Delay bearbeitet wird. Schleift man diese Effektkette per AD-Wandlung zurück in die DAW fehlt oft eine Rückwandlung des prozessierten Signals nach Stereo - kein Problem für den ADI-2 Pro, der diese Option auch im analogen Eingang anbietet.

Die andere Anwendung besteht darin, ein analoges Einzelkanalsignal auf beide analoge Eingänge zu geben (per Split-Kabel), dann die M/S-Verarbeitung zu aktivieren, und nur den digitalen linken Kanal zu analysieren. Diese Methode führt eine Monosummierung durch, die den unglaublichen SNR des ADI-2 Pro um weitere 3 dB erhöht, um noch bessere Möglichkeiten der Messanalyse zu bieten.

Die bekannteste Anwendung in der Musikaufnahme ist die Manipulation der Basisbreite. Über eine Pegeländerung des Seitenkanals lässt sich die Stereobreite von Mono über Stereo bis Extended stufenlos manipulieren (diese Methode erfordert ein externes Mischpult). Bedienungsanleitung

ADI-2 Pro FS

Diverses

35. Zubehör

Artikelnummer	Beschreibung
NT-RME-2	Netzteil für ADI-2 Pro. Robustes und leichtes Schaltnetzteil, 100 V - 240 V AC, 12 V 2 A DC. Verriegelbarer DC-Stecker.
BO968	Digitales Breakoutkabel (9-polig D-Sub auf 2 x XLR und 2 x Cinch)
USB2M	RME USB 2 Kabel, Länge 2 m
RM-19-X	19" Rack Adapter, zur seitlichen Anschraubung an den ADI-2 Pro
Unirack	Universal Rackmount-Adapter (Wanne für zwei 9,5" Geräte)
AUTOK	Kabel für Anschluß im Auto über Zigarettenanzünder
AKKUK	Kabel für Batteriebetrieb (6,3 mm Steckschuhe)

Für den ADI-2 Pro ist diverses Zubehör erhältlich:

Optische Kabel für SPDIF und ADAT:

OK0100PRO	Optisches Kabel, TOSLINK, 1 m
OK0200PRO	Optisches Kabel, TOSLINK, 2 m
OK0300PRO	Optisches Kabel, TOSLINK, 3 m
OK0500PRO	Optisches Kabel, TOSLINK, 5 m
OK1000PRO	Optisches Kabel, TOSLINK, 10 m

36. Garantie

Jeder ADI-2 Pro wird einzeln geprüft und einer vollständigen Funktionskontrolle unterzogen. Die Verwendung ausschließlich hochwertigster Bauteile erlaubt eine Gewährung voller zwei Jahre Garantie. Als Garantienachweis dient der Kaufbeleg / Quittung.

Bitte wenden Sie sich im Falle eines Defektes an Ihren Händler. Öffnen Sie das Gerät keinesfalls selbst, da es dabei beschädigt werden könnte. Außerdem wurde es mit speziellen Siegeln versehen, die im Falle einer Beschädigung den Verlust der Garantie nach sich ziehen.

Schäden, die durch unsachgemäßen Einbau oder unsachgemäße Behandlung entstanden sind, unterliegen nicht der Garantie, und sind daher bei Beseitigung kostenpflichtig.

Schadenersatzansprüche jeglicher Art, insbesondere von Folgeschäden, sind ausgeschlossen. Eine Haftung über den Warenwert des ADI-2 Pro hinaus ist ausgeschlossen. Es gelten die Allgemeinen Geschäftsbedingungen der Firma Audio AG.

37. Anhang

RME News, neueste Treiber, und viele Infos zu unseren Produkten finden Sie im Internet:

http://www.rme-audio.de

Weltweiter Vertrieb: Audio AG, Am Pfanderling 60, D-85778 Haimhausen

Hotline: Tel.: 0700 / 222 48 222 (12 ct / min.) Zeiten: Montag bis Mittwoch 12-17 Uhr, Donnerstag 13:30-18:30 Uhr, Freitag 12-15 Uhr Per E-Mail: support@rme-audio.de

Danksagung

Der Bauer Binaural Crossfeed-Effekt des ADI-2 Pro wurde von Boris Mikhaylovs bs2b Implementierung inspiriert.

Warenzeichen

Alle Warenzeichen und eingetragenen Marken sind Eigentum ihrer jeweiligen Inhaber. RME, Hammerfall und DIGICheck sind eingetragene Marken von RME Intelligent Audio Solutions.

SyncCheck, SyncAlign, TMS, TotalMix, SteadyClock, ADI-2 Pro und Extreme Power sind Warenzeichen von RME Intelligent Audio Solutions. Alesis und ADAT sind eingetragene Marken der Alesis Corp. ADAT optical ist ein Warenzeichen der Alesis Corp. Microsoft, Windows, Windows 7/8/10 sind registrierte oder Warenzeichen der Microsoft Corp. Apple, iPad, iPhone und Mac OS sind eingetragene Marken der Apple Inc. ASIO ist ein Warenzeichen der Steinberg Media Technologies GmbH.

Copyright © Matthias Carstens, 09/2019. Version 2.5 Treiberversion zur Drucklegung: Windows: 0.9685 Firmware: FPGA 213, DSP 96, 09/2019

Alle Angaben in dieser Bedienungsanleitung sind sorgfältig geprüft, dennoch kann eine Garantie auf Korrektheit nicht übernommen werden. Eine Haftung von RME für unvollständige oder unkorrekte Angaben kann nicht erfolgen. Weitergabe und Vervielfältigung dieser Bedienungsanleitung und die Verwertung seines Inhalts sowie der zum Produkt gehörenden Software sind nur mit schriftlicher Erlaubnis von RME gestattet. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.

38. Konformitätserklärung

CE

Dieses Gerät wurde von einem Prüflabor getestet und erfüllt unter praxisgerechten Bedingungen die Normen zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten über die elektromagnetische Verträglichkeit (RL2014/30/EU), sowie die Rechtsvorschriften zur elektrischen Sicherheit nach der Niederspannungsrichtlinie (RL2014/35/EU).

RoHS

Dieses Produkt wird bleifrei gelötet und erfüllt die Bedingungen der RoHS Direktive RL2011/65/EU.

Entsorgungshinweis

Nach der in den EU-Staaten geltenden Richtlinie RL2012/19EU (WEEE – Directive on Waste Electrical and Electronic Equipment – RL über Elektro- und Elektronikaltgeräte) ist dieses Produkt nach dem Gebrauch einer Wiederverwertung zuzuführen.

Sollte keine Möglichkeit einer geregelten Entsorgung von Elektronikschrott zur Verfügung stehen, kann das Recycling durch Audio AG erfolgen.

Dazu das Gerät frei Haus senden an:

Audio AG Am Pfanderling 60 D-85778 Haimhausen

Unfreie Sendungen werden nicht entgegengenommen.